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1 Introduction 

This document describes how the Scalable Modeling System's (SMS) directives can be used to 
parallelize a serial Fortran program for distributed or shared memory machines.  SMS is intended 
for use with programs that perform computations on regular gridded data sets.  The primary 
application area thus far has been Numerical Weather Prediction (NWP) models.  SMS has been 
used to parallelize NWP models that use finite difference approximation (FDA) or the spectral 
transform method.  SMS is general enough that it should be useful for parallelizing similar 
programs in other application areas.   

Before reading this document, the reader should first read the companion overview document 
"SMS:  A Directive-Based Parallelization Tool for Shared and Distributed Memory High 
Performance Computers".  It is assumed that the reader of this Users Guide is familiar with the 
concepts and terms introduced in the overview document.  The reader should also be familiar 
with basic parallel processing concepts such as distributed and shared memory, message latency 
and bandwidth, the Single Program Multiple Data (SPMD) programming model, and dependence 
analysis.  The overview document describes these concepts briefly and contains references for 
further reading.  After reading this Users Guide, the reader should have a good understanding of 
the steps that need to be taken to parallelize a serial program using the SMS directives.  If more 
detailed information about any directive is needed, the reader should refer to the companion 
reference document, "SMS Reference Manual".  Answers to common questions and detailed 
discussions of problems not covered here may be found on the SMS FAQ web site at:   

http://www-ad.fsl.noaa.gov/ac/SMS_FAQ.html 

1.1 Organization of this Document 

The SMS Users Guide begins by introducing the SMS directives in their simplest form.  Section 
2 introduces the most fundamental SMS directives with simple example programs that use the 
method of finite difference approximation.  This section also introduces other SMS directives 
that are useful in transform-based programs such as spectral NWP models.  The remaining 
sections describe in detail how the SMS directives are used in more complex situations.  Section 
3 explains how to divide work among multiple processes by the method of data decomposition 
and how to parallelize loops.  Additional loop index translations needed during parallelization are 
described in Section 4.  Special directives that provide direct control over code translation are 
introduced in Section 8.  Sections 5, 6 and 7 cover further details about the inter-process 
communication directives introduced in Section 2.  Section 9 describes parallel I/O. Directives 
that control program termination are dealt with in Section 10.  Sections 11 and 12 explain how to 
build and run parallel SMS programs.   
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1.2 Terms and Conventions 

Throughout most of this document, the term "process" is used instead of "processor" or "CPU".  
"Process" is slightly more general because it is possible to run more than one process on a single 
"processor" (and this may actually make sense on some types of CPU's that provide direct 
hardware support for multi-threaded applications).  However, on most machines there will be a 
one-to-one mapping of processes to processors.   

Fortran source code will appear in courier font.  When program identifiers appear inside the 
main body of text, they will also be italicized.  Large blocks of code will include line 
numbers to simplify discussions.  Commands will also appear in courier font and will be 
preceded by a generic command line prompt, ">>”.  The results of commands will appear in 
courier font as well.  Warning messages output by SMS will be courier bold.  File 
names will appear in italics when not in code examples or command lines.  SMS directives will 
appear in bold in code examples.   When directive parameters appear in the text they will be 
courier font, bold and italicized. Sometimes example code will be a slightly 
modified version of a previous example.  In that case, the changed lines will be highlighted.  
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2 Getting Started 

2.1 Basic Parallelization Steps 

The first step in any parallelization effort is to understand the performance characteristics of the 
serial program.  Program components that take little time to run may not need to be parallelized 
at all.  Next, dependence analysis is performed to identify the places in the code where inter-
process communication may be required.  Dependencies will be discussed as relevant SMS 
directives are introduced.  A strategy for dividing the work among the processes must then be 
chosen.  SMS uses the method of domain decomposition in which portions of large arrays, and 
their associated computations, are assigned to each process.  The dependence analysis is used to 
help pick optimal decompositions that will minimize inter-process communication.  Finally, SMS 
directives are added to parallelize the code.   

To build the parallel code, the Parallelizing Pre-Processor (PPP) is first run to translate the code 
with directives into new parallel source code.  The translated code is then compiled and linked 
with SMS libraries to produce an executable program that can be run on multiple processes.  The 
smsRun command is used to run the parallel program.   

PPP supports many common extensions to ANSI standard Fortran77, as will be seen in the code 
examples that follow.  A few Fortran90 language features (such as full array assignment) are also 
supported.  Other language extensions supported include namelist, pointer, include, do-enddo, 
automatic arrays, and while statements.  A more detailed description of supported language 
features can be found at the following SMS site:    

http://www-ad.fsl.noaa.gov/ac/SMS_Supported_Fortran_Features.html 

 

2.2 A Very Simple Program 

Below is a simple Fortran program that prints a message on the screen:   

      program basic_ex1 
      print *,'HELLO' 
      end 

If this program were stored in a file named basic_ex1.f, it could be built using the following 
command:   

>> f77 -o basic_ex1 basic_ex1.f 

The above command assumes that the Fortran compiler is named “f77”.  When run, the program 
produces the expected output on the screen:   
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>> basic_ex1 
 
 HELLO 

This program is simple enough that a parallel version can be built directly without adding any 
SMS directives.  To build with SMS, first run the Parallel Pre-Processor (PPP) to convert the 
print statements into parallel print statements:   

>> ppp basic_ex1.f 

The above command assumes that the SMS environment variable has been correctly set and that 
$SMS/bin is in the current path.  For example, if SMS is installed in directory /usr/local/sms/ 
then (assuming a c-shell environment) the SMS environment variable should be set as follows:   

>> setenv SMS /usr/local/sms 

The path could be modified using a command like this:   

>> set path= ( $SMS/bin $path ) 

See Section 12.3 for details about setting other environment variables used by SMS.  PPP 
translates the serial code in basic_ex1.f into parallel code and places the result in file 
basic_ex1_sms.f.  Depending on the configuration of PPP, other temporary files may also be 
created.  The next step is to compile basic_ex1_sms.f and link it to the SMS libraries.   

>> f77 -c -I $SMS/include basic_ex1_sms.f 
>> f77 -o basic_ex1_sms -I $SMS/include basic_ex1_sms.o -L $SMS/lib \ 
   -lppp_support -lfnnt -lnnt -lsrs -lmpi 

The above example assumes common behavior for f77 options "-I" (specify path for include 
files) and "-L" (specify path for libraries).  Some Fortran compilers handle these options in 
slightly different ways.  Note that link argument "-lmpi" links to the Message Passing Interface 
(MPI) library.  SMS uses MPI to perform underlying low-level inter-process communication on 
most supported machines.  Some machines may require different linkers or linker arguments to 
link to their MPI libraries.   

The next step is to run the parallel program:   

>> smsRun 1 basic_ex1_sms 

The smsRun command shown above runs program basic_ex1_sms on 1 process.  The output 
written to the screen will look something like this:   

SMS:: Program started: 1999:12:02::15:55:22 
SMS:  BITWISE EXACT reductions will NOT be used. 
 HELLO 
SMS:: Program complete, exiting: 1999:12:02::15:55:22 Elapsed Time = 0 sec. 
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The text lines beginning with "SMS::" are time-stamps printed by SMS when a program begins 
and when it ends.  These time-stamps are a useful guide for measuring wall-clock run times.  The 
second text line is another message from SMS that indicates default behavior of some reduction 
operations discussed in Section 7.2.  From now on, these diagnostic messages from SMS will 
usually be omitted for brevity.  The remaining line contains the text we already saw when this 
program was run as a serial Fortran code.   

The program can be run on 3 processes using the smsRun command like this:   

>> smsRun 3 basic_ex1_sms 

The following text appears on the screen:   

 HELLO 

This looks just like the run made on one process.  Why?  By default, SMS prints only one 
message per Fortran print (or write) statement to mimic the behavior of the original serial code as 
closely as possible.  SMS also provides other "parallel print" modes, as described later in this 
section and in detail in Section 9.3.   

2.3 Simple Computation on a Regular Grid 

Example 2-1 illustrates a very simple code that initializes an array, performs a simple 
computation, and prints results on the screen.  It consists of two parts:  include file basic.inc and 
source file basic_ex2.f.  

 
[Include file:  basic.inc] 
 
      integer im, jm 
      common /sizes_com/ im, jm 
 
 
[Source file:  basic_ex2.f] 
 
      program basic_ex2 
      include 'basic.inc' 
      im = 10 
      jm = 10 
      call compute 
      end 
 
      subroutine compute 
      include 'basic.inc' 
      integer i, j, xsum 
      integer x(im,jm) 
      do 100 j=1,jm 
      do 100 i=1,im 
        x(i,j) = 1 



 
 10

  100 continue 
      xsum = 0 
      do 200 j=1,jm  
      do 200 i=1,im  
        xsum = xsum + x(i,j) 
  200 continue 
      print *,'xsum = ',xsum 
      return 
      end 

Example 2-1: A simple serial code to initialize an array and print a global sum. 

 

This program initializes array x, sums the elements of x, and prints the result on the screen as 
shown below:   

>> basic_ex2 
 xsum = 100 

Notice that this program uses automatic (dynamically allocated) arrays instead of traditional 
Fortran77 static array declarations.  This technique of dynamic memory allocation is a widely 
supported extension to standard Fortran77.  The SMS directives support both dynamic and static 
memory allocation schemes.  Examples with dynamic memory allocation are shown first because 
they are slightly simpler.  Static allocation examples appear in Section 3.3. 

2.3.1 Parallelization by Domain Decomposition 

Programs such as this one that involve computations on regular grids are often best parallelized 
using the method of domain decomposition.  Arrays and the computations performed on them are 
"decomposed" (divided up) among the processes as evenly as possible.  For example, Figure 2-1, 
Figure 2-2, and Figure 2-3 show how array x might be decomposed in the i dimension  over one, 
two and three processes.   
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Figure 2-1:  The graphical representation of a non-decomposed 10 by 10 integer array. 

 

10 
1 2 
6 7 

3 4 5 
8 9 

P2 PROCESS: 

5 
5 

1 3 4 2 
1 3 4 2 

P1 

integer x(5,10) integer x(5,10) 

10 

“Local” indices:
“Global” indices: 

1 
2 
3 
4 
5 
6 
7 
8 
9 i 

j 

 

Figure 2-2:  An illustration of a  10 by 10 array decomposed over two processes.  These integer arrays are now 
local arrays declared by each process.  Local addressing is used to access array elements. 
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Figure 2-3:  A 10 by 10 array decomposed over three processes.  In this example, the locally declared size of 
process P2 is larger than the sizes of P1 or P3. 

Note that the sub-domains of array x become smaller as the number of processes increases.  
These sub-domains are referred to as "local" arrays because they cannot be accessed by other 
processes on a distributed memory machine.  In SMS terms, the original array x in the serial 
code is sometimes referred to as a "global array".  Indices used to access a global array are called 
"global indices" while indices used to access a local array are called "local indices".  Similarly, 
sizes of the dimensions of a global array are called "global sizes" and sizes of the dimensions of a 
local array are called "local sizes".  SMS treats memory as if it were distributed because this 
works on machines with either shared or distributed memory.   

In this program, domain decomposition of array x requires three basic steps.  First, the way in 
which x will be decomposed must be described.  For this simple example, we choose to 
decompose only in the i dimension.  (Decompositions of two dimensions  are discussed in 
Section 3.2).  Second, the declarations of array x should be modified to reflect smaller local 
sizes.  Finally, the start and stop indices of each relevant loop must be changed to reflect the 
smaller range of local indices.  These three steps are accomplished using four SMS directives.  
The DECLARE_DECOMP and CREATE_DECOMP directives are used to describe a 
decomposition.  Array declarations are modified using the DISTRIBUTE directive while loop 
start and stop indices are changed using the PARALLEL directive.  These directives have been 
inserted into the serial program as shown in Example 2-2 : 
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[Include file:  basic.inc] 
 1        integer im, jm 
 2        common /sizes_com/ im, jm 
 3  CSMS$DECLARE_DECOMP(DECOMP_I) 
 
[Source file:  basic_ex2.f] 
 
 1        program basic_ex2 
 2        include 'basic.inc' 
 3        im = 10 
 4        jm = 10 
 5  CSMS$CREATE_DECOMP(DECOMP_I, <im>, <0>) 
 6        call compute 
 7        end 
 8   
 9        subroutine compute 
10        include 'basic.inc' 
11        integer i, j, xsum 
12  CSMS$DISTRIBUTE(DECOMP_I, <im>) BEGIN 
13        integer x(im,jm) 
14  CSMS$DISTRIBUTE END 
15  CSMS$PARALLEL(DECOMP_I,<i>) BEGIN 
16        do 100 j=1,jm 
17        do 100 i=1,im 
18          x(i,j) = 1 
19    100 continue 
20        xsum = 0 
21        do 200 j=1,jm  
22        do 200 i=1,im  
23          xsum = xsum + x(i,j) 
24    200 continue 
25  CSMS$PARALLEL END 
26        print *,'xsum = ',xsum 
27        return 
28        end 

Example 2-2:  A simple serial code with comment-based SMS directives added. 

Notice that each of the SMS directives begins with five characters "CSMS$" which makes it a 
Fortran comment.  This is true for all SMS directives.  The advantage of using comment-based 
directives is that the original serial program can still be built and run after directives are added.    

Also, note that both the DISTRIBUTE and PARALLEL directives come as BEGIN-END pairs.  
When an SMS directive appears in this form, its scope consists of all lines of code between the 
"BEGIN" and "END" directives.  Some SMS directives, such as TRANSFER (Section 6) and 
REDUCE (Section 7) may be used either alone or as a BEGIN-END pair.  The text translation 
effects of a BEGIN-END directive pair do not extend into called subroutines.   

The first directive, DECLARE_DECOMP, is used to give a name to the SMS decomposition that 
will be used to divide among the processes the work done in loops 100 and 200.  In this 
DECLARE_DECOMP directive the single parameter, DECOMP_I, is the user-chosen name for 
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the decomposition.  Any valid Fortran variable name (up to 20 characters long) may be used to 
name a decomposition provided it does not conflict with any variable in the serial code.  

Next, the CREATE_DECOMP directive is used to describe what kind of decomposition 
DECOMP_I will be.  The first parameter is the decomposition name DECOMP_I specified in the 
DECLARE_DECOMP directive.  The second parameter, <im>, describes the decomposition as 
a 1-dimensional decomposition where the number of data points in the original serial dimension 
(the global size) is im.  The last parameter, <0>, indicates that this decomposition will have no 
halo regions (halo thickness = 0).  Halo regions are introduced later in this section and are 
described in detail in Section 5.1.  

The third directive, DISTRIBUTE, associates arrays with decompositions.  The second 
parameter is used to indicate how array dimension(s) correspond to the dimensions of the 
decomposition named DECOMP_I.  In this simple one-dimensional decomposition, <im> 
indicates that all array dimensions of size im will be decomposed as described by the single 
dimension of the SMS decomposition named DECOMP_I.  The distinction between "dimension 
of an array" and "dimension of an SMS decomposition" will become more clear in the two-
dimensional decomposition examples shown later in Section 3.2.   

The DISTRIBUTE directive does two things.  First, it identifies array declarations that will be 
translated to use local sizes.  In the above example program, the DISTRIBUTE directive will 
cause PPP to translate the declaration of x to the local declarations shown in Figure 2-1, Figure 
2-2, and Figure 2-3.  The second task of DISTRIBUTE is to provide information about how each 
array is decomposed to other SMS directives and to support automatic parallelization of binary 
I/O.  These features are described in detail in later sections.   

Finally, the PARALLEL directive identifies loops that must be modified to span the smaller local 
arrays during translation.  The second parameter, <i>, indicates that loops with loop index i 
should be translated to span the decomposed dimension of array x.  For example, if the program 
in Example 2-1 is run on two processes then i loops 100 and 200 will span local indices 1 
through 5 on each process.  A second function of the PARALLEL directive is to provide other 
enclosed directives with a "default" SMS decomposition.  Directives such as TO_GLOBAL, 
TO_LOCAL, GLOBAL_INDEX, and HALO_COMP can all determine the current SMS 
decomposition from an enclosing PARALLEL directive.  Thus, it is not necessary to use a 
decomposition name in these directives when they appear inside a PARALLEL directive.  These 
directives are described in more detail in later sections.   

Building this code is a bit more complicated than the previous example due to the presence of the 
include file that contains a directive.  Two commands are now needed.  The first translates the 
include file:   

>> ppp --header basic.inc 
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The "--header" option to the PPP command indicates that the file is an include file and must be 
translated differently than a standard Fortran source file.  In the command above, include file 
basic.inc will be translated into new SMS include file basic.inc.SMS.  The second 
command requires PPP option "--Finclude" to translate the Fortran source file:  

>> ppp --Finclude=basic.inc basic_ex2.f 

The "--Finclude" option to the PPP command indicates that file basic.inc is an include file 
that has been translated by PPP.  During translation of source file basic_ex2.f, any lines that 
include this file will be translated from 

      include 'basic.inc' 
to 
      include 'basic.inc.SMS' 

to ensure that the translated include file is used. 

Running this program on one process produces the expected result. 

>> smsRun 1 basic_ex2_sms 
 xsum =  100 

However, when this program is run on two and three processes, the values of xsum differ from 
the serial run.  

>> smsRun 2 basic_ex2_sms 
 xsum =  50 
 
>> smsRun 3 basic_ex2_sms 
 xsum =  30 

Why did the parallel program produce incorrect results?  The answer lies in the computations 
made in loop 200.  In this loop, all of the elements of array x are summed and the result is placed 
in variable xsum.  However, when the program is run on two or three processes, each process 
sums only its own local sub-domain of x as illustrated in Figure 2-4, and Figure 2-5.  To get a 
global result, we will need an additional directive that will be introduced later in this section. 
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Figure 2-4:  Each process sums their local portion of the array x. 
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Figure 2-5:  In this example, local sums are produced on each of the three processes. 

2.3.2 Parallel Printing 

By default, only one process will print a message when a print statement is encountered.  
Therefore, the value of xsum printed is the value of xsum computed locally only on the printing 
process.  We can see the value of xsum on every process by changing the default print behavior 
with the PRINT_MODE directive.  The print statement in the above program would be modified 
as shown below:   

CSMS$PRINT_MODE(ASYNC) BEGIN 
      print *,'xsum = ',xsum 
CSMS$PRINT_MODE END 

This PRINT_MODE directive changes the print mode from the default mode to "asynchronous" 
mode.  When a print statement is encountered in asynchronous print mode, each process will 
print a message to the screen.  When run on two processes, the following results are printed:   

>> smsRun 2 basic_ex2_sms 
 xsum =  50 
 xsum =  50 

Clearly, each process has computed the correct sum for its local half of array x.  When run on 
three processes we may see any of the following results:   

>> smsRun 3 basic_ex2_sms 
 xsum =  40 
 xsum =  30 
 xsum =  30 
 
>> smsRun 3 basic_ex2_sms 
 xsum =  30 
 xsum =  40 
 xsum =  30 
 
>> smsRun 3 basic_ex2_sms 
 xsum =  30 
 xsum =  30 
 xsum =  40 

In the asynchronous print mode, the messages printed by each process may come out in any 
order.  Another parallel print mode supported by SMS is the "ORDERED" print mode does 
preserve process order.  Section 9.3 describes the SMS print modes in more detail.   

2.3.3 Reduction 

We have seen that each process has computed the correct sum for its local sub-domain of array 
x.  To generate the same result as the original serial code, these local sums must be added 
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together as shown in Figure 2-6 and Figure 2-7.  In more general terms, the computed value of 
xsum depends on all of the values of array x.  This is known as a "global dependence" because 
the result of the computation depends on every element of global array x. 

 P1 P2 

xsum = 50 xsum = 50 

xsum = 100 

xsum = 100 xsum = 100 

P1 P2  

Figure 2-6:  In this example, the reduction gathers the local sums, computes a global sum and then broadcasts 
the result out to the processes. 

 

xsum = 30 

P1 P2 P3 

  

xsum = 30 xsum = 40 

xsum = 100 

P1 P2 P3 

  

xsum = 100 xsum = 100 xsum = 100 
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Figure 2-7:  A reduction performed on three processes produces a global sum of 100 on every process. 

The REDUCE directive is used to resolve this dependence.  To use the REDUCE directive, insert 
the following line immediately before the print statement on line 26 of Example 2-2:   

CSMS$REDUCE(xsum,SUM) 

The REDUCE directive performs communications necessary to reduce the local values of a 
variable on each process to a single value that is identical on all processes.  A specified operator 
is used to combine the values from each process.  The first parameter indicates that xsum is the 
name of the variable to be reduced.  The second parameter, SUM, specifies that the local values of 
xsum will be summed during reduction.  Reductions are described in more detail in Section 7. 
The parallel program now produces the expected results when run on various numbers of 
processes:   

>> smsRun 2 basic_ex2_sms 
 xsum =  100 
>> smsRun 3 basic_ex2_sms 
 xsum =  100 

2.4 Boundary Initialization 

In Example 2-2 (page 13), all elements of array x were initialized to the same value.  Often, it is 
desirable to initialize array elements differently depending on their location.  This occurs often in 
NWP models where elements near the model boundaries may be treated differently than other 
array elements.  For example, the following variant of subroutine compute in Example 2-2 sets 
elements on the array boundaries where i=1 or i=im to 2 and all other elements to 1 as 
illustrated in Figure 2-8, and specified in Example 2-3. 
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xsum = 120 

2 1 1 1 1 
2 1 1 1 1 

2 1 1 1 1 
2 1 1 1 1 

2 1 1 1 1 
2 1 1 1 1 

2 1 1 1 1 
2 1 1 1 1 

2 1 1 1 1 

2 1 1 1 1 

xsum = ΣΣx(i,j) 
i j 

 

Figure 2-8:  An illustration of a boundary initialization where edge point values are different than interior 
points. 

 

 1        subroutine compute 
 2        include 'basic.inc' 
 3        integer i, j, xsum 
 4  CSMS$DISTRIBUTE(DECOMP_I, <im>) BEGIN 
 5        integer x(im,jm) 
 6  CSMS$DISTRIBUTE END 
 7  CSMS$PARALLEL(DECOMP_I,<i>) BEGIN 
 8        do 100 j=1,jm 
 9        do 100 i=1,im 
10          x(i,j) = 1 
11    100 continue 
12        do 110 j=1,jm                    
13          x( 1,j) = 2                    
14          x(im,j) = 2                    
15    110 continue                         
16        xsum = 0 
17        do 200 j=1,jm  
18        do 200 i=1,im  
19          xsum = xsum + x(i,j) 
20    200 continue 
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21  CSMS$PARALLEL END 
22  CSMS$REDUCE(xsum,SUM) 
23        print *,'xsum = ',xsum 
24        return 
25        end 
 

Example 2-3:  Boundary Initialization requires special handling. 

When the serial version of Example 2-3 is run, the following results are printed on the screen:   

>> basic_ex3 
 xsum =  120 

However, when the parallel code is run on more than one process, results are unpredictable:   

>> smsRun 2 basic_ex3_sms 
 xsum =  138 
>> smsRun 3 basic_ex3_sms 
<core dump> 

The reason for these erroneous results can be seen by examining new loop 110 in detail.  Line 14 
in loop 110 contains the following statement:   

        x(im,j) = 2 

This statement will perform the following assignments:   

        x(10, 1) = 2 
        x(10, 2) = 2 
... 
        x(10,10) = 2 

However, on two processes, each sub-domain of array x has local size x(5,10) (see Figure 
2-2) so x(10,10) is out of bounds.  In fact, this statement will cause an out-of-bounds 
assignment during any run on two or more processes.  The behavior of any program that 
performs such assignments is unpredictable.   

The statement on line 13 also causes incorrect results, even though it does not do out-of-bounds 
assignment:   

        x( 1,j) = 2 

This statement will perform the following assignments:   

        x(1, 1) = 2 
        x(1, 2) = 2 
... 
        x(1,10) = 2 
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However, these assignments will not produce the desired results when two or more processes are 
used because the index in the i dimension ("1") is a global index.  The effects of this erroneous 
assignment statement are shown in Figure 2-9 and Figure 2-10. 
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do j=1,10 
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enddo 
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Figure 2-9:  Boundary initialization of decomposed data require special handling to avoid erroneous 
assignments on local index 1 by process P2. 
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do j=1,10 
  x(1,j) = 2 
enddo 

ERRONEOUS ASSIGNMENTS 

 

Figure 2-10:   Boundary initialization of global index 1 will cause erroneous assignments in the local arrays on 
process P2 and P3. 

Two problems must be solved to repair this code.  First, the global indices 1 and im must be 
translated to their local equivalents.  Second, the assignment statements must be modified so they 
are only executed on the processes that contain the specified global indices in their local sub-
domains.  The GLOBAL_INDEX directive solves these problems as shown below:   

       do 110 j=1,jm 
CSMS$GLOBAL_INDEX(1) BEGIN 
         x( 1,j) = 2 
         x(im,j) = 2 
CSMS$GLOBAL_INDEX END 
   110 continue 
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The GLOBAL_INDEX directives perform the correct index translations and ensure that the 
enclosed statements are only executed on the appropriate processes.  The parameter in the 
GLOBAL_INDEX directive, "1", indicates that these translations will be applied to array 
indices that correspond to the first (and in this case only) decomposed dimension.  In this case, 
the decomposed dimension corresponds to the i dimension of array x.  (The concept of 
"decomposed dimension" is explained in detail in Section 3.)  The effects of the 
GLOBAL_INDEX directives on the assignments of x(1,j) and x(im,j) are shown for the 
two process case in Figure 2-11.  
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      do j=1,10 
CSMS$GLOBAL_INDEX(1) BEGIN 
        x(1,j) = 2 
        x(im,j) = 2 
CSMS$GLOBAL_INDEX END 
      enddo 

NO ERRONEOUS ASSIGNMENTS   

 

Figure 2-11:  GLOBAL_INDEX is used to correctly initialize the boundaries of the array x. 

 

Now when the parallel code is run, results match the serial code:   

>> smsRun 2 basic_ex3_sms 
 xsum =  120 
>> smsRun 3 basic_ex3_sms 
 xsum =  120 
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2.5 A Simple FDA Program 

The following example is a FDA program that solves Laplace's equation on a two-dimensional 
surface with fixed boundaries using Jacobi relaxation.  On a two-dimensional surface, Laplace's 
equation takes the form:   

x
f

2

2

∂
∂

 + 
y
f

2

2

∂
∂

 =   0         

A simple approach is to discretize the two-dimensional space and use a finite difference 
approximation to the derivatives to seek a numerical solution.  The discrete equation is:   

  4*f(i,j) - f(i-1,j) - f(i+1,j) - f(i,j-1) - f(i,j+1) = 0 

The initial state is f on the boundaries.  The boundaries are constant and non-periodic.  The above 
equation is solved for f(i,j) iteratively until it converges.  The solution is said to converge when 
the difference between successive solutions is less than a specified threshold.  The difference 
between values of f(i,j) in two successive iterations is the following:   

  df(i,j) = (1/4) * (f(i-1,j) + f(i+1,j) + f(i,j-1) + f(i,j+1)) - f(i,j) 

Using the method of Jacobi relaxation, the value of f(i,j) during an iteration is calculated from the 
value of f(i,j) computed in the previous iteration as follows:   

  fnew(i,j) = fold(i,j) + df(i,j) 

In Example 2-4 below, boundary elements of array f are initially set to 2.0 (lines 25-31).  
Laplace's equation is then solved and diagnostic messages are printed on the screen. Previously 
described SMS directives have already been inserted.   

[Source file:  laplace.f]  
 1        program laplace  
 2        include 'basic.inc'  
 3        im = 10  
 4        jm = 10  
 5  CSMS$CREATE_DECOMP(DECOMP_I, <im>, <0>)  
 6        call laplace  
 7        end  
 8         
 9        subroutine laplace  
10        include 'basic.inc'  
11        integer i, j, iter  
12        real max_error  
13        real tolerance  
14        parameter (tolerance = 0.001)  
15  CSMS$DISTRIBUTE(DECOMP_I, <im>) BEGIN  
16        real f(im,jm), df(im,jm)  
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17  CSMS$DISTRIBUTE END  
18  CSMS$PARALLEL(DECOMP_I,<i>) BEGIN  
19        do 100 j=1,jm  
20        do 100 i=1,im  
21          f(i,j) = 0.0  
22    100 continue  
23        do 110 j=1,jm  
24  CSMS$GLOBAL_INDEX(1) BEGIN  
25          f( 1,j) = 2.0  
26          f(im,j) = 2.0  
27  CSMS$GLOBAL_INDEX END  
28    110 continue  
29        do 120 i=1,im  
30          f(i, 1) = 2.0  
31          f(i,jm) = 2.0  
32    120 continue  
33        iter = 0  
34        max_error = 2.0 * tolerance  
35  C main iteration loop...   
36        do while ((max_error .gt. tolerance) .and. (iter .lt. 1000))  
37          iter = iter + 1  
38          max_error = 0.0  
39          do 200 j=2,jm-1  
40          do 200 i=2,im-1  
41            df(i,j) = 0.25*(f(i-1,j) + f(i+1,j) + f(i,j-1) + f(i,j+1))  
42       &                - f(i,j)  
43    200 continue  
44          do 300 j=2,jm-1  
45          do 300 i=2,im-1  
46            if (max_error .lt. abs(df(i,j))) then  
47              max_error = abs(df(i,j))  
48            endif  
49    300 continue  
50  CSMS$REDUCE(max_error, MAX)  
51          do 400 j=2,jm-1  
52          do 400 i=2,im-1  
53            f(i,j) = f(i,j) + df(i,j)  
54    400 continue  
55        enddo  
56  CSMS$PARALLEL END  
57        print *, 'Solution required ',iter,' iterations'  
58        print *, 'Final error = ', max_error  
59   
60        return  
61        end 

Example 2-4:  Serial code plus directives illustrate a parallel solution to Laplace’s equation.  This solution, 
using a one-dimensional decomposition, produces incorrect results. 

Notice that the REDUCE directive uses the maximum operator to reduce max_error via 
parameter MAX.  The Jacobi relaxation will also work if average error is used instead of 
maximum error.  However, using maximum error guarantees bit-wise exact results as described 
in Section 7.2.   
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When the serial program is run, the following messages are printed on the screen:   

>> laplace 
 Solution required  85  iterations 
 Final error =  9.9968910E-4 

When the parallel program is run on more than one process, results are incorrect:   

>> smsRun 2 laplace_sms 
 Solution required  45  iterations 
 Final error =  9.9253654E-4 
 
>> smsRun 3 laplace_sms 
 Solution required  131  iterations 
 Final error =  9.9420547E-4 

Why do results change for different numbers of processes?  The answer lies in the computations 
made on lines 41 and 42:   

df(i,j) = 0.25*(f(i-1,j) + f(i+1,j) + f(i,j-1) + f(i,j+1)) - f(i,j) 
 

Here, each df(i,j) is computed from f(i-1,j), f(i+1,j), f(i,j-1), f(i,j+1), and 
f(i,j).  This type of dependence is called an "adjacent dependence" because the computation 
at point (i,j) depends on data at adjacent (or "nearby") points.  Adjacent dependencies are 
often represented graphically using a “stencil” as shown in  

Figure 2-12 and Figure 2-13. 

 

y(i-1,j) 

y(i,j) 

y(i,j+1) 

y(i+1,j) 

y(i,j-1) 

x(i,j) = y(i,j) + y(i+1,j) + y(i-1,j) + y(i,j-1) + y(i,j+1) 

“Stencil”:  x(i,j) depends on 

 

 

Figure 2-12  This five point stencil illustrates the dependencies of the array y on the computation of x. 
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x(i,j) = y(i,j) + y(i+1,j) + y(i+2,j) + y(i,j+1) + y(i,j+2) 
                + y(i-1,j) + y(i-2,j) + y(i,j-1) + y(i,j-2) 
                + y(i+1,j+1) + y(i+1,j-1) 

 + y(i-1,j+1) + y(i-1,j-1) 

“Stencil”:  x(i,j) depends on

 

Figure 2-13:  A thirteen point stencil illustrates the dependencies required when x must access data two 
points in each direction on y in the code segment shown. 

In Figure 2-14 stencils have been overlaid on graphical representations of the sub-domains 
assigned to each process during a run made on three processes.  The stencil centered at global 
point(2,2) on process P1 illustrates that computations at this grid point require values from 
global points(2,2), (2,1), (1,2), (2,3), and (3,2).  These array elements are all inside 
the local sub-domain of process P1.  Similarly, computations at global point (5,8) depend only 
on array elements inside the local sub-domain of process P2.  However, computations on sub-
domain boundaries cannot be performed so easily.  For example, the stencil centered at global 
point (7,5) on process P2 depends on the element at global point(8,5) which is located in 
the local sub-domain of process P3.  Similarly, the stencil centered at global point(8,2) on 
process P3 requires an element from process P2.  The results of the parallel program above are 
incorrect because no data is sent between processes to resolve the adjacent dependence in loop 
200.   
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Figure 2-14:   Illustration of how an adjacent dependency causes out of bounds data references on processes 
P2 and P3. 

It is possible to solve this problem by sending single data points between processes.  However, 
on high-latency machines, sending messages that contain only one array element is very 
inefficient compared to sending messages that contain many array elements.  The most common 
approach to handle adjacent dependencies is to create "halo regions" to store these data as shown 
in Figure 2-15.  When data in these regions are needed, the halo regions are updated by swapping 
columns (or larger blocks) of data between processes as shown in Figure 2-16.  This form of 
inter-process communication is called "exchange" and is supported by the EXCHANGE 
directive.   
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Figure 2-16:  Halo regions are updated by exchanging data between adjacent processes. 

 

  

Below is a corrected parallel program that uses halo regions and includes exchange 
communication:   
 
[Source file:  laplace.f] 
 
 1        program laplace 
 2        include 'basic.inc' 
 3        im = 10 
 4        jm = 10 
 5  CSMS$CREATE_DECOMP(DECOMP_I, <im>, <1>) 
 6        call laplace 
 7        end 
 8         
 9        subroutine laplace 
10        include 'basic.inc' 
11        integer i, j, iter 
12        real max_error 
13        real tolerance 
14        parameter (tolerance = 0.001) 
15  CSMS$DISTRIBUTE(DECOMP_I, <im>) BEGIN 
16        real f(im,jm), df(im,jm) 
17  CSMS$DISTRIBUTE END 
18  CSMS$PARALLEL(DECOMP_I,<i>) BEGIN 
19        do 100 j=1,jm 
20        do 100 i=1,im 
21          f(i,j) = 0.0 
22    100 continue 
23        do 110 j=1,jm 
24  CSMS$GLOBAL_INDEX(1) BEGIN 
25          f( 1,j) = 2.0 
26          f(im,j) = 2.0 
27  CSMS$GLOBAL_INDEX END 
28    110 continue 
29        do 120 i=1,im 
30          f(i, 1) = 2.0 
31          f(i,jm) = 2.0 
32    120 continue 
33        iter = 0 
34        max_error = 2.0 * tolerance 
35  C main iteration loop... 
36        do while ((max_error .gt. tolerance) .and. (iter .lt. 1000)) 
37          iter = iter + 1 
38          max_error = 0.0 
39  CSMS$EXCHANGE(f)   
40          do 200 j=2,jm-1 
41          do 200 i=2,im-1 
42            df(i,j) = 0.25*(f(i-1,j) + f(i+1,j) + f(i,j-1) + f(i,j+1)) 
43       &                - f(i,j) 
44    200 continue 
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45          do 300 j=2,jm-1 
46          do 300 i=2,im-1 
47            if (max_error .lt. abs(df(i,j))) then 
48              max_error = abs(df(i,j)) 
49            endif 
50    300 continue 
51  CSMS$REDUCE(max_error, MAX) 
52          do 400 j=2,jm-1 
53          do 400 i=2,im-1 
54            f(i,j) = f(i,j) + df(i,j) 
55    400 continue 
56        enddo 
57  CSMS$PARALLEL END 
58        print *, 'Solution required ',iter,' iterations' 
59        print *, 'Final error = ', max_error 
60   
61        return 
62        end 

Example 2-5:  The laplace program which has been corrected to exchange the array f.  Resolves the adjacent 
dependencies in loop 200. 

The third parameter of CREATE_DECOMP directive has been changed to <1>.  This indicates 
that all arrays decomposed using DECOMP_I will have a halo region one point thick added in the 
first decomposed dimension (the i dimension in this case).  The EXCHANGE directive has been 
added on line 39.  Its only parameter is the name of the variable (f) to be exchanged.  The 
EXCHANGE directive is placed immediately before loop 200 to ensure that halo regions of f are 
updated prior to the computations that need them.  The EXCHANGE directive is described in 
more detail in section 5.1.   

Now the parallel program produces the correct results on more than one process:   

>> smsRun 2 laplace_sms 
 Solution required  85  iterations 
 Final error =  9.9968910E-4 
 
>> smsRun 3 laplace_sms 
 Solution required  85  iterations 
 Final error =  9.9968910E-4 

Notice that only interior process P2 has halo regions on both sides in Figure 2-15.  A current 
limitation of SMS is that it only supports non-periodic boundary conditions.  Therefore, halo 
regions are only needed on one side of processes that are on the edge of a global array (i.e. 
processes P1 and P3).  This limitation will be removed in a future SMS release.   
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2.6 Writing Output to Disk 

The Laplace solver (Example 2-5) would be more useful if the final state of array f could be 
written to disk.  This is easily done by adding the following code fragment immediately before 
the return statement (line 61) in subroutine laplace:   

      open(10, file='f.out', form='unformatted') 
      write(10) f 
      close(10) 

When the serial program is run, file f.out is written.  For the SMS parallel program, no 
additional directives are required to handle this output.  By default, SMS  automatically generates 
f.out in exactly the same format as the serial program, for any number of processes.  However, 
SMS can also produce other file formats as discussed in Section 9.   

2.7 Using Multiple Decompositions 

So far, we have seen how to parallelize a program that only requires a single domain 
decomposition.  However, many programs require the use of different decompositions at 
different times to run efficiently in parallel.  The TRANSFER directive provides the means to 
transform arrays between decompositions.  Spectral NWP models are a prime candidates for 
application of TRANSFER (see Section 6).   

In this section, we present a simple case where two different decompositions are needed.  In 
Example 2-6, the statement at line 42 contains a dependency called a "recurrence relation".  In 
this statement, an update to x(i,j) depends on x(i,j-1) which was updated in the previous loop 
iteration.  SMS does not currently provide directives that directly support parallelization of this 
type if the array dimension is decomposed.  SMS will support simple one-dimensional recurrence 
relations in a future release.  In this example, the second (j) dimension is decomposed, so SMS 
cannot handle this statement.  Similarly, the loop starting at line 61 prevents decomposition in i.  
One solution, given in Example 2-6, is to decompose x in i and y in j. 

[transfer.inc] 
 1        integer im, jm 
 2        common /sizes_com/ im, jm   
 3 
 4  CSMS$DECLARE_DECOMP(DECOMP_I) 
 5  CSMS$DECLARE_DECOMP(DECOMP_J) 
 6 
 
[transfer.f] 
 1        program TRANSFER1 
 2        implicit none 
 3 
 4        include 'transfer.inc' 
 5 
 6        integer i 
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 7        integer j 
 8 
 9        im = 60 
10        jm = 90 
11 
12  CSMS$CREATE_DECOMP(DECOMP_I, <im>, <0>) 
13  CSMS$CREATE_DECOMP(DECOMP_J, <jm>, <0>) 
14 
15        call DO_IT 
16 
17        end 
18 
19 
20 
21        subroutine DO_IT 
22        include 'transfer.inc' 
23 
24  CSMS$DISTRIBUTE(DECOMP_I, im) BEGIN 
25        real x(im,jm) 
26  CSMS$DISTRIBUTE END 
27 
28  CSMS$DISTRIBUTE(DECOMP_J, jm) BEGIN 
29        real y(im,jm) 
30  CSMS$DISTRIBUTE END 
31 
32  C BEGIN 
33 
34        x = 1.0 
35 
36  CSMS$PARALLEL(DECOMP_I, <i>) BEGIN 
37 
38  C dependency in the j dimension that 
39  C SMS does not provide directives to parallelize 
40        do j = 2, jm 
41          do i = 1, im 
42            x(i,j) = x(i,j) + x(i,j-1) 
43          end do 
44        end do 
45  CSMS$PARALLEL END 
46 
47  CSMS$TRANSFER(<X, Y>) BEGIN 
48        do j = 1, jm 
49          do i = 1,im 
50            y(i,j) = x(i,j) 
51          end do 
52        end do 
53  CSMS$TRANSFER END 
54 
55        call CALCS_THAT_MODIFY_X(x) 
56 
57  CSMS$PARALLEL(DECOMP_J, <j>) BEGIN 
58 
59  C dependency in the i dimension that 
60  C SMS does not provide directives to parallelize 
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61        do j = 1, jm 
62          do i = 2, im 
63            y(i,j) = y(i,j) + y(i-1,j) 
64          end do 
65        end do 
66  CSMS$PARALLEL END 
67 
68        open(10,file='f1',form='unformatted') 
69        write(10) y 
70        close(10) 
71 
72        return 
73        end 

Example 2-6: A simple SMS parallel program that requires two data decompositions due to recurrance 
relations in “x” and “y”. 

Example 2-6 contains two DECLARE_DECOMP and CREATE_DECOMP directives.  The 
DISTRIBUTE directive at line 24 uses DECOMP_I to decompose x in i.  The DISTRIBUTE 
directive at line 28 uses DECOMP_J to decompose y in j.  The TRANSFER directive at line 47 
generates the communication to transpose x into y as illustrated in Figure 2-17.  SMS 
implements this by replacing the code between the BEGIN and END TRANSFER directives with 
a call to a subroutine that does the transposition.  x is referred to as the source array of the 
TRANSFER directive and y is referred to as the destination array.  The type and rank of the 
source and destination arrays must be the same.  However, the array sizes may differ. 

 

 

Transpose 

P1 P2  

Figure 2-17. An illustration of the data movement required between processes P1 and P2 for a transposition 
operation. 
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3 Decomposing Arrays and Parallelizing Loops 

3.1 Choosing Decompositions 

In order to choose domain decompositions that will allow optimal performance, the dependencies 
of arrays on one another must be analyzed.  Usually, several decomposition options are possible.  
Decompositions of 3D arrays supported by SMS are shown in Figure 3-1.  The dependence 
analysis is used to help pick optimal decompositions that will minimize inter-process 
communication.  Typical FDA NWP models will be optimally decomposed in one or both of the 
horizontal dimensions as illustrated "a", "b", or "d" of Figure 3-1.  Decompositions used by 
typical spectral NWP models are described in Section 6.2.   

 

j 
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(a) 
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(e) 

 

(c) 

 

(f)  

Figure 3-1:  Three-dimensional decompositions supported by SMS. 

Other issues to consider when selecting decompositions are the architecture of the machine on 
which the program will most likely be run and how many processes will be available.  For vector 
machines, it is best to leave the inner dimension non-decomposed when possible to maximize 
vector lengths.  On cache-based machines, it may be best to decompose the inner dimension 
instead.  For example, in Figure 3-1, decomposition "a" would preserve long vector lengths while 
decomposition "b" would not.  If the number of processes available were larger than the number 
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of grid points in the single decomposed dimension, two dimensions would have to be 
decomposed.   

3.2 Two-Dimensional Decompositions 

The full power of the DECLARE_DECOMP, CREATE_DECOMP, DISTRIBUTE, and 
PARALLEL directives becomes more apparent when two dimensions are decomposed.  Consider 
the following example:   

[Include file:  decomp_ex1.inc] 
 
 1        integer im, jm, km 
 2        common /sizes_com/ im, jm, km 
 3  CSMS$DECLARE_DECOMP(DECOMP_IJ) 
 
 
[Source file:  decomp_ex1.f] 
 
 1        program decomp_ex1 
 2        include 'decomp_ex1.inc' 
 3        im = 15 
 4        jm = 10 
 5        km = 2 
 6  CSMS$CREATE_DECOMP(DECOMP_IJ, <im, jm>, <0,0>) 
 7        call compute 
 8        end 
 9         
10        subroutine compute 
11        include 'decomp_ex1.inc' 
12        integer i, j, k 
13  CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN 
14        integer z(im,jm,km) 
15  CSMS$DISTRIBUTE END 
16        integer zsum 
17  CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN 
18        do 100 k=1,km 
19        do 100 j=1,jm 
20        do 100 i=1,im 
21          z(i,j,k) = 1 
22    100 continue 
23        zsum = 0 
24        do 200 k=1,km 
25        do 200 j=1,jm 
26        do 200 i=1,im  
27          zsum = zsum + z(i,j,k) 
28    200 continue 
29  CSMS$PARALLEL END 
30  CSMS$REDUCE(zsum, SUM) 
31        print *,'zsum = ',zsum 
32        return 
33        end 

Example 3-1:  An SMS program that uses a two dimensional decomposition. 



 
 38

When run, the serial version of this program prints the following message:   

>> decomp_ex1 
 zsum =          300 

Directives CREATE_DECOMP, DISTRIBUTE, and PARALLEL now have more complex 
parameters than in the simple examples from Section 2.3.  The second parameter to 
CREATE_DECOMP, <im, jm>, indicates that the decomposition named DECOMP_IJ has 
two decomposed dimensions and that the global size of the first decomposed dimension is im 
and the global size of the second decomposed dimension is jm.  The third parameter, <0,0>, 
indicates that DECOMP_IJ has no halo regions in either decomposed dimension.   

The second parameter to DISTRIBUTE, <im>, indicates that array dimensions of size im are 
decomposed as described by the first decomposed dimension of DECOMP_IJ.  The third 
parameter, <jm>, indicates that array dimensions of size jm are decomposed as described by the 
second decomposed dimension of DECOMP_IJ.  So, the first dimension of array z is 
decomposed as described by the first decomposed dimension of DECOMP_IJ and the second 
dimension of array z is decomposed as described by the second decomposed dimension of 
DECOMP_IJ.  The third dimension of array z will not be decomposed.  This is decomposition 
"d" in Figure 3-1.  More details about DISTRIBUTE can be found in Section 3.5. 

The second parameter to PARALLEL, <i>, is used to identify loop indices for loops spanning 
the first decomposed dimension of DECOMP_IJ.  Similarly, the third parameter, <j>, is used to 
identify loop indices for loops spanning the second decomposed dimension of DECOMP_IJ.  
The PARALLEL directive will translate both the i and j dimensions of loops 100 and 200 to 
local loop bounds.   

When this code is run on 2 or 3 processes, we see the expected results:   

>> smsRun 2 decomp_ex1_sms 
 zsum =  300 
>> smsRun 3 decomp_ex1_sms 
 zsum =  300 

3.3 Decomposing Arrays that use Statically Allocated Memory 

When dynamic memory allocation is used, SMS automatically sets local array sizes at run-time.  
In contrast, when static memory allocation is used, local array sizes must be set by the 
programmer.  Therefore, it is essential to understand how SMS will assign processes to 
decomposed dimensions to avoid slowing execution down on cache machines and wasting 
memory on any machine.  Even when dynamic memory allocation is used it is useful to 
understand process assignment when tuning performance.    
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3.3.1 How SMS Assigns Processes to Decomposed Dimensions 

To better understand process assignment, subroutine "compute" has been modified to print out 
the number of array elements each process has in each dimension.  The following code replaces 
the print statement on line 31 of Example 3-1:  

CSMS$PRINT_MODE(ORDERED) BEGIN 
      print *,'  MY  im = ',i-1,'  jm = ',j-1,'  km = ',k-1 
CSMS$PRINT_MODE END 

The "ORDERED" print mode ensures that each process prints a message and that messages 
always appear in the same order.  The ORDERED print mode only works when all processes 
execute the enclosed print statement(s).  Print modes are discussed in detail in Section 9.   

Assume the new program is named decomp_ex2_sms.  When it is run on one process, the 
following results are printed on the screen:   

>> smsRun 1 decomp_ex2_sms 
   MY  im =  15   jm =  10   km =  2 

The results of the one-process run for a single k plane of array z indicate that loops spanned the 
full array dimensions (15,10,2), as shown in Figure 3-2.   
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Figure 3-2:   Illustration of one “k” plane of the array z required to support a one process run.  In this 
example, loops will span the entire array. 
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On two processes:   

>> smsRun 2 decomp_ex2_sms 
   MY  im =  8   jm =  10   km =  2 
   MY  im =  7   jm =  10   km =  2 

Here, one process's loops spanned (8,10,2) and the second process's loops spanned 
(7,10,2).  In the two process run,  SMS decomposed the array in the first dimension as 
illustrated in Figure 3-3. 
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Figure 3-3. For a two process run, SMS assigns two processes to the first decomposed dimension (im) and 
leaves the second decomposed dimension non-decomposed.   

On three processes:   

>> smsRun 3 decomp_ex2_sms 
   MY  im =  5   jm =  10   km =  2 
   MY  im =  5   jm =  10   km =  2 
   MY  im =  5   jm =  10   km =  2 
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In this case, each of the processes' loops spanned (5,10,2).  SMS assigned three processes to 
the first decomposed dimension (im) and left the second decomposed dimension non-
decomposed.   On 4 processes: 

>> smsRun 4 decomp_ex2_sms 
   MY  im =  8   jm =  5   km =  2 
   MY  im =  7   jm =  5   km =  2 
   MY  im =  8   jm =  5   km =  2 
   MY  im =  7   jm =  5   km =  2 

Here, two of the process's loops spanned (8,5,2) and the other two process's loops spanned 
(7,5,2).  SMS assigned two "columns" of processes to the first decomposed dimension (im) 
and two "rows" of processes to the second decomposed dimension (jm) as shown in Figure 3-4. 
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Figure 3-4:  For a four process run,  SMS decomposes in both dimensions.  
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On eight processes:   

>> smsRun 8 decomp_ex2_sms 
   MY  im =  4   jm =  5   km =  2 
   MY  im =  4   jm =  5   km =  2 
   MY  im =  4   jm =  5   km =  2 
   MY  im =  3   jm =  5   km =  2 
   MY  im =  4   jm =  5   km =  2 
   MY  im =  4   jm =  5   km =  2 
   MY  im =  4   jm =  5   km =  2 
   MY  im =  3   jm =  5   km =  2 

In this case, six of the process's loops spanned (4,5,2) and two of the process's loops spanned 
(3,5,2).  Here, SMS has assigned four "columns" of processes to the first decomposed 
dimension (im) and two "rows" of processes to the second decomposed dimension (jm).  This is 
illustrated in Figure 3-5. 
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Figure 3-5: In the eight process run, SMS assigns four processes to the first decomposed dimension and two to 
the second. 

From these results, it can be seen that SMS will assign more processes to the decomposed 
dimension with the largest global size, when possible.  When global sizes of decomposed 
dimensions are equal, SMS will assign more processes to the second decomposed dimension.  
Also, SMS will always attempt to make process layout as close to "square" as possible.  The 
rules followed by SMS to assign processes to decomposed dimensions are described in detail in 
Appendix A.  However, it may be easier to simply print local sizes as in the previous example. A 
future SMS release will ease the process of setting local array sizes in the static case and will 
print out the process layout for each decomposition when it is created.  

3.3.2 A Static Memory Program 

Example 3-2 illustrates a program using static memory allocation.  In this example, the 
DECLARE_DECOMP directive requires a new second parameter, <(im/2)+1, jm/2>.  
This informs the translator that the decomposition named DECOMP_IJ has two decomposed 
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dimensions.  It also indicates that DECOMP_IJ will be used for arrays that are statically 
allocated and that the DISTRIBUTE command should translate sizes of declared array 
dimensions corresponding to the first and second decomposed dimensions to local sizes 
(im/2)+1 and jm/2 respectively.   

[Include file:  decomp_ex4.inc] 
 
 1       integer im, jm, km 
 2       parameter (im = 15, jm = 10, km = 2) 
 3 CSMS$DECLARE_DECOMP(DECOMP_IJ, <(im/2)+1, jm/2>) 
 
[Source file:  decomp_ex4.f] 
 
 4       program decomp_ex4 
 5       include 'decomp_ex4.inc' 
 6 CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN 
 7       integer z(im,jm,km) 
 8 CSMS$DISTRIBUTE END 
 9       integer zsum, i, j, k 
10 CSMS$CREATE_DECOMP(DECOMP_IJ, <im, jm>, <0,0>) 
11 CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN 
12       do 100 k=1,km 
13      do 100 j=1,jm 
14       do 100 i=1,im 
15         z(i,j,k) = 1 
16   100 continue 
17       zsum = 0 
18       do 200 k=1,km 
19       do 200 j=1,jm 
20       do 200 i=1,im  
21         zsum = zsum + z(i,j,k) 
22   200 continue 
23 CSMS$PARALLEL END 
24 CSMS$REDUCE(zsum, SUM) 
25       print *,'zsum = ',zsum 
26       end 

Example 3-2:  An SMS program that uses static memory allocation requires the local sizes be declared in the 
DECLARE_DECOMP directive.  In this example, these local sizes are:  (im/2)+1 and jm/2. 

In static memory cases such as this where the number of processes assigned to a decomposed 
dimension does not evenly divide the global size of that dimension, the local sizes used in the 
DECLARE_DECOMP directive must be set for the process(es) that use(s) the most memory.  As 
we saw in Figure 3-4, these are precisely the local sizes needed by SMS for a four-process run.  
The term (im/2)+1 takes into account the fact that two of the processes requires local arrays of 
size (8,5,2) while the other two requires arrays of size (7,5,2) as illustrated in Figure 3-6.   

Since arrays are declared statically, the rules of Fortran77 require that (im/2)+1 and jm/2 be 
compile-time constants in order to be used in a declaration statement.  The translator handles this 
by generating appropriate parameter statements during the translation of the 
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DECLARE_DECOMP directive.  These parameter statements are then used during translation of 
array sizes inside DISTRIBUTE directives.  Conceptually, the declaration of z on line 7 of 
Example 3-2 will be translated to:   

      integer z((im/2)+1,jm/2,km) 
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Figure 3-6:  For static memory allocation, the size of the decomposed arrays is set in the 
DECLARE_DECOMP directive based on the number of processes that will be used to run the program.  
Sometimes all the memory declared will not be used as illustrated in processes P2 and P4. 

A run made on 8 processes yields expected results.  However, a run made on 2 processes 
produces the following:   
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>> smsRun 2 decomp_ex4_sms 
 Process:   1 Error at: ./decomp_ex4_sms.f.tmp:10.1 
 Process:   1 Error status=   -2202 MSG: DECOMPOSED ARRAYS ARE TOO SMALL. 
 Process:   1 Aborting... 

What happened?  From Example 3-2, we saw that the largest local array sizes required on any 
process for the two-process run is(8,10,2).  However, the DECLARE_DECOMP directive set 
local array sizes to ((im/2)+1,jm/2,km) = (8,5,2) which is too small for the two 
process run (see Figure 3-6).  SMS detects this error at run time, prints the error messages, and 
aborts the program.   

Why did it work for the 8-process run?  Again, from Example 3-2, we saw that the largest local 
array sizes required on any process for the eight-process run are(4,5,2).  So the local array 
sizes were big enough to hold the translated arrays and the program ran as expected.  However, it 
wasted memory because only half of each declared array was ever used (1:4,*,*).   

In addition to wasting memory, performance of the 8-process run might not be optimal on a 
cache-based machine because the data used in each array are scattered over a block of memory 
twice the needed size.  This is likely to result in more cache misses and may degrade 
performance, sometimes significantly.  This effect becomes more severe as the number of 
processes increases.  For example, if the program were run on 32 processes, the largest local 
array sizes required on any process would be only (2,3,2).  Therefore, it is especially 
important to declare arrays using the smallest possible sizes for large numbers of processes.   

To fix the local arrays sizes for a two-process run, we can modify the sizes in the 
DECLARE_DECOMP directive as follows:   

CSMS$DECLARE_DECOMP(DECOMP_IJ, <(im/2)+1, jm>) 

If the following DECLARE_DECOMP directive were used   

CSMS$DECLARE_DECOMP(DECOMP_IJ, <im, jm>) 

all translated arrays would be declared full-size.  This code could then be run on any number of 
processes (provided each process has enough memory).  This is very useful during debugging 
because one common technique for finding bugs in a parallel code is to compare results for runs 
made on different numbers of processes.  Once debugging is complete, the 
DECLARE_DECOMP directives should be changed to minimize memory use.   

In summary, SMS provides the flexibility of allowing memory to be wasted for convenience 
during debugging.  However, the user should try to minimize memory waste once debugging is 
complete.  Failure to conserve memory can result in performance degradation on cache-based 
machines.   
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3.4 More About DECLARE_DECOMP and CREATE_DECOMP 

3.4.1 Placement of DECLARE_DECOMP and CREATE_DECOMP 

It is important to understand a few details concerning DECLARE_DECOMP and 
CREATE_DECOMP so these directives can be placed correctly.  The SMS code translator, PPP, 
converts a DECLARE_DECOMP directive into Fortran declarations of all the variables needed 
to store the internal description of an SMS decomposition.  So, a DECLARE_DECOMP 
directive must be placed before the first executable line of code in a program.  Also, if a 
decomposition needs to be visible to more than one program unit, then it is best to place the 
DECLARE_DECOMP directive in an include file.  A CREATE_DECOMP directive is 
translated into executable Fortran code that initializes all the internal variables declared in the 
translation of the corresponding DECLARE_DECOMP directive.  A CREATE_DECOMP 
statement may only be placed where it would be legal to write an executable line of Fortran code.   

The rules for placing the CREATE_DECOMP and DISTRIBUTE directives differ for programs 
that use static or dynamic memory.  The CREATE_DECOMP directive can actually appear after 
a DISTRIBUTE directive in the static memory case.  However, in the dynamic memory case this 
is not possible because number of decomposed dimensions is not known until the 
CREATE_DECOMP directive is reached.  In this case, the code generated by 
CREATE_DECOMP must execute prior to any subroutine containing DISTRIBUTE directives.   

3.4.2 Load Balancing via Index Scrambling 

Ideally, each process will have exactly the same amount of work to do.  In practice, most NWP 
models have computations that vary spatially so some processes may have more work to do than 
others.  This is commonly known as load imbalance.  Load imbalances slow down a parallel 
program because some processes with less work are forced to wait for processes with more work 
to catch up.  One example is load imbalance in a global NWP model due to differences in 
computation required for day and night grid-points.  In this case more computation is required at 
longitudes where the sun shines.  There are also load imbalances between latitudes in the 
northern and southern hemispheres during winter or summer.  Figure 3-7 illustrates longitude 
scrambling. 
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Figure 3-7  Longitude scrambling is used to reduce load imbalances due to computational differences 
stemming from day night cycles in a global NWP model.  In this case, the model is run using 2 processes.  One 
process has the brightly covered segments; the other has the darker colored segments.  The effect is to give 
each process half the day-time points and half the night-time points. 

The CREATE_DECOMP directive supports a feature called index scrambling that can reduce the 
effects of such load imbalances.  Index scrambling is only allowed when there are no adjacent 
dependencies in the dimension to be scrambled because "EXCHANGE" communication would 
be very expensive if indices were scrambled.  Several types of scrambling are supported.  These 
include longitude scrambling to balance day/night load and latitude scrambling to balance 
winter/summer load.  Both of these scrambling methods are useful in global NWP models.   

To use index scrambling, a fourth parameter is added to the CREATE_DECOMP as shown in the 
code fragments below:   

CSMS$CREATE_DECOMP(DECOMP_J, <jm>, <0>, <SCRAMBLE_LAT_STRATEGY>) 
 
CSMS$CREATE_DECOMP(DECOMP_I, <im>, <0>, <SCRAMBLE_LON_STRATEGY>) 

In the first case, parameter <SCRAMBLE_LAT_STRATEGY> indicates that the first decomposed 
dimension of DECOMP_J will be scrambled using a method appropriate for balancing load 
among latitudes in a global model.  In the second case, parameter 
<SCRAMBLE_LON_STRATEGY> indicates that the first decomposed dimension of DECOMP_I 
will be scrambled using a method appropriate for balancing load among longitudes in a global 
model.  (Note that neither decomposition has halo regions.)  No other code changes are required 
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to use the scrambling feature.  For this reason, it is convenient to add this feature as a 
performance optimization once debugging of the non-scrambled parallel code is complete.   

3.5 More About DISTRIBUTE 

The DISTRIBUTE directive will ignore scalar variables such as integer avg in following code 
fragment:   

CSMS$DISTRIBUTE(DECOMP_I, <im>) BEGIN 
      integer w(im), avg 
CSMS$DISTRIBUTE END 

The DISTRIBUTE directive will not change the declaration of avg because avg does not have a 
dimension of size im in its declaration.  Also, avg will be treated as non-decomposed 
(duplicated on each process) by the other SMS directives.  The behavior is the same as if the 
directive and declarations had been written like this:  

CSMS$DISTRIBUTE(DECOMP_I, <im>) BEGIN 
      integer w(im) 
CSMS$DISTRIBUTE END 
      integer avg 

The DISTRIBUTE directive can decompose several types of arrays as shown the in the following 
code fragments:   

CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN 
      integer x(im,jm,km) 
CSMS$DISTRIBUTE END 

Here, the first dimension of array x is decomposed as described by the first decomposed 
dimension of DECOMP_IJ and the second dimension of array x is decomposed as described by 
the second decomposed dimension of DECOMP_IJ.  The third dimension of array x is not 
decomposed.   

 

CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN 
      real a(im,km,jm) 
CSMS$DISTRIBUTE END 

Here, the first dimension of array a is decomposed as described by the first decomposed 
dimension of DECOMP_IJ and the third dimension of array a is decomposed as described by the 
second decomposed dimension of DECOMP_IJ.  The second dimension of array a is not 
decomposed.   
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CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN 
      real b(km,jm,im) 
CSMS$DISTRIBUTE END 

Here, the third dimension of array b is decomposed as described by the first decomposed 
dimension of DECOMP_IJ and the second dimension of array b is decomposed as described by 
the second decomposed dimension of DECOMP_IJ.  The first dimension of array b is not 
decomposed.   

 

CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN 
      real c(im,2,km) 
CSMS$DISTRIBUTE END 

Here, the first dimension of array c is decomposed as described by the first decomposed 
dimension of DECOMP_IJ.  The second and third dimensions of array c are not decomposed.   

 

CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN 
      real d(10,km) 
CSMS$DISTRIBUTE END 

Here, array d is not decomposed.   

 

CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN 
      real e(jm) 
CSMS$DISTRIBUTE END 

Here, the single dimension of array e is decomposed as described by the second decomposed 
dimension of DECOMP_IJ.   

All of the above declarations could equivalently be enclosed in one DISTRIBUTE directive pair 
as shown below:   

CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN 
      integer x(im,jm,km) 
      real a(im,km,jm), b(km,jm,im), c(im,2,km), d(10,km), e(jm) 
CSMS$DISTRIBUTE END 

These simple examples obscure a few subtle features of parameters <im> and <jm> in the 
DISTRIBUTE directive.  We have described these parameters as "array dimensions", but they 
are really somewhat more general.  Consider the following code fragments:   
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CSMS$CREATE_DECOMP(DECOMP_IJ, <nx+2, ny+2>, <0,0>) 
... 
CSMS$DISTRIBUTE(DECOMP_IJ, <nx>, <ny>) BEGIN 
      real u(nx+2,ny+2,nz) 
CSMS$DISTRIBUTE END 

These DISTRIBUTE directives will correctly translate declarations of array u in a manner 
analogous to the translation of array x in the previous example.  However, notice that the second 
parameter is <nx> instead of <nx+2> as one might suspect.  The string inside the angle 
brackets, nx, is really just used to identify array dimensions.  This string is called a "dimension 
tag".  The decoupling of "dimension tag" from the exact declared array dimensions provides 
some additional flexibility that minimizes the number of DISTRIBUTE directives that need to be 
used.   

The dimension tags can be more complicated if necessary.  For example, consider the following 
fragments from a program that uses dynamic memory:   

[program main] 
 
CSMS$CREATE_DECOMP(DECOMP_IJ, <nx+2, ny+2>, <0,0>) 
      nxp2 = nx+2 
      nyp2 = ny+2 
... 
 
[subroutine sub1] 
 
CSMS$DISTRIBUTE(DECOMP_IJ, <nx,nxp2>, <ny,nyp2>) BEGIN 
      real u(nx+2,ny+2,nz), a(nxp2,nyp2,nz) 
CSMS$DISTRIBUTE END 

Now the second parameter  <nx,nxp2> has two tags, nx and nxp2.  This indicates that array 
dimensions identified by either nx or nxp2 will be decomposed as described by the first 
decomposed dimension of DECOMP_IJ.  Here, arrays u and a will be handled in exactly the 
same way during translation.  The ability to specify more than one dimension tag for each 
decomposed dimension minimizes the number of DISTRIBUTE directives required in cases like 
this.   

3.6 More About PARALLEL 

There is no run-time performance penalty for using a PARALLEL directive because processes 
are not synchronized.  Also, PARALLEL directives may enclose any valid Fortran executable 
statements.  Therefore, a program that has only one decomposition will usually require no more 
than one BEGIN-END pair of PARALLEL directives for each program unit (subroutine, 
function, or main program).   
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The PARALLEL directive will translate serial loops correctly provided the upper and lower loop 
bounds are valid global indices.  For example, the i and j loops below would all be correctly 
translated:   

CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN 
      do 100 k=1,km 
      do 200 j=3,jm-2 
      do 200 i=3,im-2 
        z(i,j,k) = x(i,j,k) + y(i,j,k) 
  200 continue 
 
      do 210 j=1,2 
      do 210 i=1,im 
        z(i,j,k) = 0 
  210 continue 
 
      do 220 j=jm-1,jm 
      do 220 i=1,im 
        z(i,j,k) = 0 
  220 continue 
 
      do 230 j=1,jm 
      do 230 i=1,2 
        z(i,j,k) = 0 
  230 continue 
 
      do 240 j=1,jm 
      do 240 i=im-1,im 
        z(i,j,k) = 0 
  240 continue 
 
  100 continue 
CSMS$PARALLEL END 

In this code fragment, notice that translated loop 210 would only be executed on processes that 
contain global indices j=1 or j=2.  The PARALLEL directive ensures that other processes will 
skip loop 210.  Similar translations will occur for the other loops.   

It is useful to keep a few other caveats in mind when using the PARALLEL directive.  Indices 
must be used consistently to avoid incorrect translation.  Sometimes, indices are used for non-
decomposed loops as well as for loops that span decomposed dimensions.  This is the case in the 
following fragment:   

CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN 
      do 200 k=1,km 
      do 200 j=1,jm 
      do 200 i=1,im 
        z(i,j,k) = x(i,j,k) + y(i,j,k) 
  200 continue 
      do 500 i=1,3 
        call smooth(z) 
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  500 continue 
CSMS$PARALLEL END 

In this case, loop 500 is used to repeatedly call subroutine smooth which performs some 
computations on decomposed array z.  This loop should NOT be translated because i is being 
used as an iteration count, not as an index into a decomposed dimension.  This is easily fixed 
either by using a different loop index in loop 500, by moving the PARALLEL END directive to 
exclude loop 500, or by using the IGNORE directive as shown in Section 8.   

Finally, it is almost always necessary to make sure that any loops containing decomposed arrays 
be enclosed inside PARALLEL directives.  (A counter-example is described in the discussion of 
the TO_LOCAL directive in Section 4.)  During translation, PPP will generate a warning 
message whenever it finds a loop that is not enclosed by PARALLEL directives if that loop 
contains a decomposed array.  For example, suppose that we comment out the PARALLEL 
BEGIN (line 17) and PARALLEL END (line 29) directives in Example 3-1 (page 37).   

C CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN 
... 
C CSMS$PARALLEL END 

Assume the new program is stored in a file named decomp_ex5.f.  The "Verbose" option of 
PPP, discussed in Section 11, can be used to cause warning messages to be displayed during 
translation:   

>> ppp --Verbose=2 --Finclude=decomp_ex1.inc decomp_ex5.f 

When the erroneous code is translated, the following warning message will be printed:   

"./decomp_ex5_sms.f.tmp" 24 9 WARNING: This variable, decomposed by 
CSMS$DISTRIBUTE, is being used outside of a parallel region. 

If the program is built and run (ignoring the warning message), the following will appear on the 
screen:   

>> smsRun 1 decomp_ex5_sms 
 zsum =  300 
>> smsRun 4 decomp_ex5_sms 
 im =  15   jm =  10   km =  2 
MPI: MPI_COMM_WORLD rank 1 has terminated without calling MPI_Finalize() 
MPI: aborting job 
< core dump > 

What happened?  With the PARALLEL directive removed, all loops remain un-translated and 
therefore span all global indices i=1,15 and j=1,10.  This was not a problem for the 1-
process run because declarations remain full-sized.  However, during the 4-process run, process-
local array sizes are either (8,5,2) or (7,5,2) so the loops spanning i=1,15 and j=1,10 
will go out of bounds.  In the run shown above, the out of bounds writes cause a core dump.  
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However, behavior of any Fortran program that contains an out-of-bounds indexing bug can be 
very unpredictable and such bugs can be difficult to track down.  It is best to use the "Verbose" 
option to PPP to generate warning messages and to check the code carefully any time this PPP 
warning message appears.   

3.7 Arrays with Non-Unit Lower Bounds 

Another issue to deal with regarding array declarations is the possibility that arrays may be 
declared with lower bounds other than one.  For example, consider the following variant of 
Example 3-1:   

[Include file:  decomp_ex6.inc] 
 
      integer im, jm, km 
      common /sizes_com/ im, jm, km 
CSMS$DECLARE_DECOMP(DECOMP_IJ : <0,0>) 
 
[Source file:  decomp_ex6.f] 
 
      program decomp_ex6 
      include 'decomp_ex6.inc' 
      im = 15 
      jm = 10 
      km = 2 
CSMS$CREATE_DECOMP(DECOMP_IJ, <im, jm>, <0,0>) 
      call compute 
      end 
 
      subroutine compute 
      include 'decomp_ex6.inc' 
      integer i, j, k 
CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN 
      integer z(0:im-1,0:jm-1,0:km-1), zsum 
CSMS$DISTRIBUTE END 
CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN 
      do 100 k=0,km-1 
      do 100 j=0,jm-1 
      do 100 i=0,im-1 
        z(i,j,k) = 1 
  100 continue 
      zsum = 0 
 
      do 200 k=0,km-1 
      do 200 j=0,jm-1 
      do 200 i=0,im-1 
        zsum = zsum + z(i,j,k) 
  200 continue 
 
CSMS$PARALLEL END 
CSMS$REDUCE(zsum, SUM) 
      print *,'zsum = ',zsum 
      return 
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      end 

In this program array z is declared so the first index (lower bound) is zero in each dimension 
instead of the Fortran default of one.  The bounds of loops 100 and 200 now start at zero.  The 
only difference between the directives in this example and those in Example 3-1 is 
DECLARE_DECOMP.  The new final parameter, <0,0> indicates that array declarations have 
a lower bound of zero in both decomposed dimensions.  The colon ":" is used as a separator in 
this syntax so SMS won't confuse lower bounds with global arrays sized for a static memory 
case.  For example, if we had accidentally used a comma "," instead of the colon, the directive 
would have looked like this:   

C ERRONEOUS DIRECTIVE! 
CSMS$DECLARE_DECOMP(DECOMP_IJ, <0,0>) 

This would have been interpreted as a two-dimensional decomposition of statically allocated 
arrays with global sizes of zero in both decomposed dimensions!  A correct way to mix static 
allocation and non-zero lower bounds is shown below:   

CSMS$DECLARE_DECOMP(DECOMP_IJ, <im/2, jm/2> : <0,0>) 
 

In this example, the second parameter represents local sizes (<im/2, jm/2>) and the third 
parameter is lower bound values (<0,0>) for the decomposition DECOMP_IJ. 
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4 Translating Array Indices 

4.1 Translating Local Indices to Global Indices 

When a loop has been translated using the PARALLEL directive, the value of the index is now 
process local as illustrated in Figure 2-2 and Figure 2-3.  If the intent of the program is to access 
the global value, this index will need to be translated back to a global value.  The TO_GLOBAL 
directive is used for this purpose as illustrated in Example 4-1. 

  
[Include file:  tran_index.inc] 
 
     1        integer im, jm 
     2        common /sizes_com/ im, jm 
     3  CSMS$DECLARE_DECOMP(DECOMP_IJ) 
 
[Source file:  tran_index1.f] 
      1       program tran_index1 
      2       implicit none 
      3       include 'tran1.inc' 
      4       im = 5 
      5       jm = 3 
      6 CSMS$CREATE_DECOMP(DECOMP_IJ, <im, jm>, <0,0>) 
      7       call compute 
      8       end 
      9  
     10       subroutine compute 
     11       implicit none 
     12       include 'tran1.inc' 
     13       integer i, j 
     14 CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN 
     15       integer x(im,jm) 
     16 CSMS$DISTRIBUTE END 
     17 CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN 
     18       do 100 j=1,jm 
     19       do 100 i=1,im 
     20 CSMS$TO_GLOBAL(<1,i>, <2,j>) BEGIN 
     21         x(i,j) = (100 * i) + j 
     22 CSMS$TO_GLOBAL END  
     23   100 continue 
     24 CSMS$SERIAL BEGIN 
     25       do j = 1, jm 
     26         write(*,'(16i5)') (x(i,j),i=1,im) 
     27       end do 
     28 CSMS$SERIAL END 
     29 CSMS$PARALLEL END 
     30       return 
     31       end 
 
 



 
 57

Example 4-1: An SMS parallel program that incorrectly initializes the array x inside subroutine compute. 

This program initializes array x in loop 100 of subroutine compute.  Each element of array x is 
then printed on the screen. When the serial code is run, the following is printed on the screen:   

>> tran_index1 
  101  201  301  401  501 
  102  202  302  402  502 
  103  203  303  403  503 

Since x(i,j) = (100 * i) + j, each printed element appears as a three digit integer 
where the first digit is the i index, the second digit is "0", and the third digit is the j index.  The 
same result is seen when the SMS version is run on one process.  However, the results are 
incorrect when two processes are used:   

>> smsRun 2 tran_index1_sms 
  101  201  301  101  201 
  102  202  302  102  202 
  103  203  303  103  203 

Why are the results incorrect?  The PARALLEL directive has translated the i and j indices used 
to compute x in loop 100 using local indices.  However, correct operation requires that x be 
initialized using global indices as in the original serial code.  The solution is to use the 
TO_GLOBAL directive to translate the local indices to global indices.  In this case, the body of 
loop 100 (line 18) would be replaced with the following code:   

CSMS$TO_GLOBAL(<1,i>, <2,j>) BEGIN 
        x(i,j) = (100 * i) + j 
CSMS$TO_GLOBAL END 

The first parameter in the TO_GLOBAL directive, <1,i>, indicates that array index i is an 
index in the first decomposed dimension.  The second parameter, <2,j>, indicates that array 
index j is an index in the second decomposed dimension.  All occurrences of indices i and j 
inside the TO_GLOBAL directives that are not array references will be converted to their global 
equivalents in the first and second decomposed dimensions, respectively.   

Note that the TO_GLOBAL does not need an SMS decomposition name when it is enclosed by 
PARALLEL directives.  In this case, TO_GLOBAL uses the decomposition specified by the 
enclosing PARALLEL directives.  Directives TO_LOCAL and GLOBAL_INDEX, introduced 
later in this section, also have this feature.  Running the new parallel code on various numbers of 
processes will now yield the same result as the serial run.  Also note that since p is decomposed, 
the SERIAL directive is required to handle the print statement on line 26 as will be explained in 
Section 8.1.   

The TO_GLOBAL directive is also commonly used in "if" statements such as the one shown 
below in loop 200:   
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     1        subroutine compute 
     2        include 'tran_index.inc' 
     3        integer i, j 
     4  CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN 
     5        integer x(im,jm) 
     6  CSMS$DISTRIBUTE END 
     7  CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN 
     8        do 100 j=1,jm 
     9        do 100 i=1,im 
    10  CSMS$TO_GLOBAL(<1,i>, <2,j>) BEGIN 
    11          x(i,j) = (100 * i) + j 
    12  CSMS$TO_GLOBAL END 
    13    100 continue 
    14        do 200 j=1,jm 
    15        do 200 i=1,im 
    16  CSMS$TO_GLOBAL(<1,i>) BEGIN 
    17          if (i.gt.3) then 
    18  CSMS$TO_GLOBAL END 
    19            x(i,j) = 0 
    20          endif 
    21    200 continue 
    22        call print_all(x) 
    23  CSMS$PARALLEL END 
    24        return 

Example 4-2: A program that illustrates application of  TO_GLOBAL to “if” statements. 

Assume the new program is stored in a file named tran_index2.f.  In the if statement on 
line 17, index i is compared with global index 3.  However, the enclosing PARALLEL directive 
will cause i to be translated to a local index.  The TO_GLOBAL directive will cause i to be 
translated back to a global index for correct comparison with global index 3.  The output below 
shows that values of x are indeed set to zero for values of global index i greater than 3:   

>> smsRun 4 tran_index2_sms 
  101  201  301    0    0 
  102  202  302    0    0 
  103  203  303    0    0 

4.2 Translating Global Indices to Local Indices Inside Loops 

Sometimes, indices that have been translated to global values need to be translated back to local 
values to be used as indices into decomposed arrays.  The TO_LOCAL directive is used for this 
translation.  Consider the following code fragment that uses computed indices to avoid out-of-
bounds references:   

      do 300 j=1,jm 
      do 300 i=1,im 
        im1 = max( 1,i-1) 
        ip1 = min(im,i+1) 
        x(i,j) = y(i,j) - y(im1,j) - y(ip1,j) 
  300 continue 
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The max and min functions use index i in a comparison with global index values 1 and im.  
Therefore, the TO_GLOBAL directive must be used (assume that the code fragment below is 
enclosed by a pair of PARALLEL directives):   

      do 300 j=1,jm 
      do 300 i=1,im 
CSMS$TO_GLOBAL(<1,i>) BEGIN 
        im1 = max( 1,i-1) 
        ip1 = min(im,i+1) 
CSMS$TO_GLOBAL END 
        x(i,j) = y(i,j) - y(im1,j) - y(ip1,j) 
  300 continue 

The TO_GLOBAL directive will convert i-1 and i+1 to global values so ip1 and im1 will be 
computed as global indices.  However, ip1 and im1 are then used as indices into decomposed 
array x, so they must be converted back from global to local values to avoid out-of-bounds array 
references for multi-process runs.  The TO_LOCAL directive is used to accomplish this as 
shown below:   

      do 300 j=1,jm 
      do 300 i=1,im 
CSMS$TO_GLOBAL(<1,i>) BEGIN 
CSMS$TO_LOCAL(<1,im1,ip1>) BEGIN 
        im1 = max( 1,i-1) 
        ip1 = min(im,i+1) 
CSMS$TO_LOCAL END 
CSMS$TO_GLOBAL END 
        x(i,j) = y(i,j) - y(im1,j) - y(ip1,j) 
  300 continue 

Here, the TO_LOCAL and TO_GLOBAL directives are used in combination to accomplish both 
phases of index translation.  The first parameter in the TO_LOCAL directive, <1,im1,ip1>, 
indicates that array indices im1 and ip1 are both used in loops that span the first decomposed 
dimension.  In this example, occurrences of either index in code enclosed by the TO_LOCAL 
directives that are not array references will be converted to their local equivalents in the first 
decomposed dimension.   

Sometimes, array indices are stored for later use.  If conversion to local indices can be made 
before storage, then no index translation directives are required.  This is the case in the following 
example:   

[Include file:  tran_index3.inc] 
 
 1       integer im 
 2       common /sizes_com/ im 
 3 CSMS$DECLARE_DECOMP(DECOMP_I) 
 4  
 5  
[Source file:  tran_index3.f] 
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 1       program tran_index3 
 2       include 'tran_index3.inc' 
 3       im = 5 
 4 CSMS$CREATE_DECOMP(DECOMP_I, <im>, <0>) 
 5       call compute 
 6  
 7  
 8       subroutine compute 
 9       include 'tran_index3.inc' 
10 CSMS$DISTRIBUTE(DECOMP_I, <im>) BEGIN 
11       integer x(im), i, pack_num, ip 
12       integer xpack(im), i_pack(im) 
13 CSMS$DISTRIBUTE END 
14 CSMS$PARALLEL(DECOMP_I,<i>) BEGIN 
15       do 100 i=1,im 
16 CSMS$TO_GLOBAL(<1,i>) BEGIN 
17         x(i) = 100 * i 
18 CSMS$TO_GLOBAL END 
19   100 continue 
20       pack_num = 0 
21       do 400 i=1,im 
22         if (x(i).gt.300) then 
23           pack_num = pack_num + 1 
24           xpack(pack_num) = x(i) 
25           i_pack(pack_num) = i 
26         endif 
27   400 continue 
28 CSMS$PARALLEL END 
29       call pack_compute(xpack,pack_num) 
30       do 500 ip=1,pack_num 
31         x(i_pack(ip)) = xpack(ip) 
32   500 continue 
33       print *,'ARRAY x:' 
34 CSMS$SERIAL BEGIN 
35       write(*, ‘(5I5)’) (x(i), i=1,im) 
36 CSMS$SERIAL END 
37       return 
38       end 
39        
40       subroutine pack_compute(xp,pnum) 
41       integer pnum, xp(pnum), p 
42       do 600 p=1,pnum 
43         xp(p) = 0 
44   600 continue 
45       return 
46       end 

Example 4-3:  This program illustrates indirect indexing.  No directives are required in subroutine 
pack_compute.  

Here, subroutine compute initializes decomposed array x and then "packs" selected values of x 
into array xpack for further processing by subroutine pack_compute.  Indices of selected 
values are stored in array i_pack.  After the selected values of x are modified by 
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pack_compute, they are "unpacked" back into array x.  Loop 400 does the selection and 
packing and loop 500 does the unpacking. The SERIAL directive will be explained in Section 
8.1. When the serial code is run, the following output is printed on the screen:   

>> tran_index3 
 ARRAY x: 
  100  200  300    0    0 

In this example, the computations inside subroutine pack_compute are very simple:  each packed 
data point is just set to zero.  Running the parallel code on different numbers of processes yields 
the same results.   

Subroutine pack_compute has no computational dependencies (it is "embarrassingly 
parallel").  As a result, no SMS directives are required.  This type of packing and unpacking is 
common in NWP models, especially in physics subroutines.  In fact, subroutines like 
pack_compute may call many other subroutines in the same fashion, with none of them 
requiring any SMS directives.  It is not uncommon for large portions of a NWP model to require 
no SMS directives.   

Note that loop 500 need not be enclosed inside the PARALLEL directives because loop index ip 
is purely local.  If this code is translated using the --Verbose=2 option to PPP, the expected 
warning message appears because array x is being used in a loop that is not inside a parallel 
region: 

"./tran_index3_sms.f.tmp" 32 25 WARNING: This variable, decomposed by 
CSMS$DISTRIBUTE, is being used outside of a parallel region. 

The warning message can be safely ignored in this case.   

4.3 Using TO_LOCAL to Generate Processor Local Sizes and Loop Bounds 

In many NWP models, large sections of code contain no dependencies that require 
communications (typically model physics routines).  If the array bounds and loop limits are 
passed into these routines, SMS provides a means to parallelize them without inserting directives 
into the code.  Example 4-4 shows such a case. 

    1         program AVOID_DIRECTIVES 
    2         implicit none 
    3         include 'tran_index.inc' 
    4         im = 8 
    5         jm = 6 
    6   CSMS$CREATE_DECOMP(DECOMP_IJ, <im, jm>, <2,2>) 
    7         call compute 
    8         end 
    9          
   10         subroutine compute 
   11         implicit none 



 
 62

   12         include 'tran_index.inc' 
   13         integer i, j 
   14         integer istart, iend, jstart, jend 
   15   CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN 
   16         integer x(im,jm), y(im,jm) 
   17   CSMS$DISTRIBUTE END 
   18    
   19   CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN 
   20    
   21         do 100 j=1,jm 
   22         do 100 i=1,im 
   23   CSMS$TO_GLOBAL(<1,i>, <2,j>) BEGIN 
   24           x(i,j) = (100 * i) + j 
   25   CSMS$TO_GLOBAL END 
   26     100 continue 
   27    
   28         y = 0.0 
   29    
   30         istart = 1 
   31         iend   = im - 1 
   32         jstart = 2 
   33         jend   = jm 
   34    
   35   csms$to_local(<1, im     : size  >, <2, jm   : size  >, 
   36   csms$>        <1, istart : lbound>, <1, iend : ubound>, 
   37   csms$>        <2, jstart : lbound>, <2, jend : ubound>) begin 
   38         call physics(x, im, jm, istart, iend, jstart, jend, y) 
   39   csms$to_local end 
   40   CSMS$SERIAL BEGIN 
   41         do j = 1, jm 
   42           write(*,'(16i5)') (y(i,j),i=1,im) 
   43         end do 
   44   CSMS$SERIAL END 
   45   CSMS$PARALLEL END 
   46         return 

47 end 
   48 
   49 
   50 
   51         subroutine physics(arr_in, dim1_size, dim2_size, 
   52        &                   dim1_start, dim1_end, 
   53        &                   dim2_start, dim2_end, 
   54        &                   arr_out) 
   55         integer dim1_size, dim2_size 
   56         integer arr_in(dim1_size, dim2_size) 
   57         integer dim1_start, dim1_end 
   58         integer dim2_start, dim2_end 
   59         integer arr_out(dim1_size, dim2_size) 
   60    
   61         integer i, j 
   62         do j = dim2_start, dim2_end 
   63           do i = dim1_start, dim1_end 
   64          arr_out(i,j) = 2.0*arr_in(i,j) 
   65        end do 
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   66         end do 
   67         return 
   68         end 
 

48  

Example 4-4  Sample code that shows how TO_LOCAL can be used to pass local array bounds and start/end  
loop limits to subroutines so that no directives be added to the called routines. 

Program AVOID_DIRECTIVES calls subroutine physics (line 38),  passing the arrays x and 
y, the sizes for each dimension (im and jm) and the starting and ending loop limits (istart, 
iend, jstart, jend) over which the loops in physics will span. The TO_LOCAL 
directive at lines 35-37 converts the dimensions and loop limits to their process local values.  The 
syntax 
 
<1, im : size> 
 
causes PPP to replace references to im with the process local size for the first decomposed 
dimension, (where the size includes the number of halo points).  For a static memory model, the 
size would be the local size declared in the DECLARE_DECOMP directive.  The syntax 
 
<1, istart : lbound> 
 
causes PPP to replaced instances of istart with the local index of the first interior point for 
the first decomposed dimension for the given process.  Figure 4-1 shows all the sizes and bounds 
for this case, assuming the program is run on 4 processes. 
 
The result is that, inside subroutine physics, the dim1_size, dim2_size, dim1_start, 
dim1_end, dim2_start, and dim2_end all have the correct process local values.  
Consequently, subroutine physics produces the right answer for any process decomposition, 
even though it contains no SMS directives. 
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                                   Processor       Decomposed      Size   Lbound    Ubound 
                                                           dimension 
 
                                         P1                      1                  6          1              4 
                                         P1                      2                  5          1              3 
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Figure 4-1  Process layout,  local sizes, lower bounds and upper bounds for a 4 process run of  Example 4-4. 
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4.4 Global-to-Local Index Translation with Restricted Execution 

The form of the TO_LOCAL directive described above should always be used in combination 
with a TO_GLOBAL directive.  Otherwise, there will be no assurance that the global index being 
translated actually belongs on a process.  For example, consider the following code fragment that 
is enclosed in a PARALLEL directive but is not inside a loop:   

      id = 5 
      jd = 4 
      x(id,jd) = 10 

The following use of TO_LOCAL would be incorrect:   

CSMS$TO_LOCAL(<1,id>,<2,jd>) BEGIN 
      id = 5 
      jd = 4 
CSMS$TO_LOCAL END 
      x(id,jd) = 10 

The translation of id and jd from global values to process-local values will work fine on the 
process that "owns" global point (5,4).  However, the translation will be erroneous on 
processes that do not own global point (5,4) because there is no valid local equivalent of these 
global coordinates on those processes.  In order to restrict the execution of these statements to the 
process that owns the data, the GLOBAL_INDEX directive must be used as shown below:   

      id = 5 
      jd = 4 
CSMS$GLOBAL_INDEX(1,2) BEGIN 
      x(id,jd) = 10 
CSMS$GLOBAL_INDEX END 

The GLOBAL_INDEX directives perform the correct index translations AND ensure that the 
enclosed code is only executed on the process that owns global point (5,4).  In this case, the 
first parameter in the directive, 1, indicates that all array indices corresponding to the first 
decomposed dimension will be translated to their local equivalents.  The second parameter, 2, 
indicates that all array indices corresponding to the second decomposed dimension will be 
translated to their local equivalents.  In addition, execution of the enclosed assignment statement 
will only be permitted on the process that contains global point (id,jd).   

Consider the following example that initializes the boundaries of an array that is decomposed in 
two dimensions:   

 1       subroutine compute 
 2       include 'tran_index5.inc' 
 3 CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN 
 4       integer x(im,jm) 
 5 CSMS$DISTRIBUTE END 
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 6       integer i, j 
 7 CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN 
 8       do 100 j=1,jm 
 9       do 100 i=1,im 
10 CSMS$TO_GLOBAL(<1,i>, <2,j>) BEGIN 
11         x(i,j) = (100 * i) + j 
12 CSMS$TO_GLOBAL END 
13   100 continue 
14       do 110 j=2,jm-1 
15 CSMS$GLOBAL_INDEX(1) BEGIN 
16         x( 1,j) = 0 
17         x(im,j) = 0 
18 CSMS$GLOBAL_INDEX END 
19   110 continue 
20       do 120 i=2,im-1 
21 CSMS$GLOBAL_INDEX(2) BEGIN 
22         x(i, 1) = 0 
23         x(i,jm) = 0 
24 CSMS$GLOBAL_INDEX END 
25   120 continue 
26 CSMS$GLOBAL_INDEX(1,2) BEGIN 
27       x( 1, 1) = 0 
28       x(im, 1) = 0 
29       x( 1,jm) = 0 
30       x(im,jm) = 0 
31 CSMS$GLOBAL_INDEX END 
32       print *,'ARRAY x:' 
33       call print_all(x) 
34 CSMS$PARALLEL END 
35       return 
36       end 

Example 4-5:  An SMS program that illustrates the use of the GLOBAL_INDEX directive to initialize 
boundaries. 

This program initializes array x as in previous examples.  It then proceeds to set the boundary 
values of x to zero in lines 14 through 30.  Assume the new program is stored in a file named 
tran_index5.f.  When the serial code is run, the following is printed on the screen:   

>> tran_index5 
 ARRAY x: 
    0    0    0    0    0 
    0  202  302  402    0 
    0    0    0    0    0 

Three pairs of GLOBAL_INDEX directives handle the necessary translations.  The first pair 
deals with global indices 1 and im in loop 110 while the second pair deals with global indices 1 
and jm in loop 120.  The third pair handles global indices in the four assignment statements on 
lines 27 through 30.  In each case, indices are translated and execution of each enclosed 
statement is permitted only on appropriate processes.  When this program is run on multiple 
processes, the expected results are printed on the screen.    
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5 Handling Adjacent Dependencies 

5.1 Further Details on EXCHANGE 

In Section 2.5, we saw how the EXCHANGE directive was used to implement communications 
needed to resolve adjacent dependencies for a dynamic memory, one dimensional decomposition 
case where the halo regions required were of width 1.  In this sub-section, we expand on that 
discussion by examining the treatment of two-dimensional decompositions, larger stencils, and 
by discussing other miscellaneous details about EXCHANGE.  

5.1.1 Using EXCHANGE in the Case of Two-Dimensional Decompositions  

We begin by modifying the Laplace Example 2-5 introduced in Section 2.5 so that a two 
dimensional decomposition is used.  Two dimensional data decompositions allow parallel 
programs to scale to a large number of processes.   

     1        program basic_ex_2d_decomp                        
     2        include 'basic.inc' 
     3        im = 10 
     4        jm = 10 
     5  CSMS$CREATE_DECOMP(DECOMP_I, <im,jm>, <1,1>)            
     6        call laplace 
     7        end 
     8 
     9        subroutine laplace 
    10        include 'basic.inc' 
    11        integer i, j, iter 
    12        real max_error 
    13        real tolerance 
    14        parameter (tolerance = 0.001) 
    15  CSMS$DISTRIBUTE(DECOMP_I, <im>, <jm>) BEGIN             
    16        real f(im,jm), df(im,jm) 
    17  CSMS$DISTRIBUTE END 
    18  CSMS$PARALLEL(DECOMP_I,<i>, <j>) BEGIN                  
    19        do 100 j=1,jm 
    20        do 100 i=1,im 
    21          f(i,j) = 0.0 
    22    100 continue 
    23        do 110 j=1,jm 
    24  CSMS$GLOBAL_INDEX(1) BEGIN 
    25          f( 1,j) = 2.0 
    26          f(im,j) = 2.0 
    27  CSMS$GLOBAL_INDEX END 
    28    110 continue 
    29        do 120 i=1,im 
    30  CSMS$GLOBAL_INDEX(2) BEGIN                              
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    31          f(i, 1) = 2.0 
    32          f(i,jm) = 2.0 
    33  CSMS$GLOBAL_INDEX END                                   
    34    120 continue 
    35        iter = 0 
    36        max_error = 2.0 * tolerance 
    37  C main iteration loop... 
    38        do while ((max_error .gt. tolerance) .and. (iter .lt. 1000)) 
    39          iter = iter + 1 
    40          max_error = 0.0 
    41  CSMS$EXCHANGE(f) 
    42          do 200 j=2,jm-1 
    43          do 200 i=2,im-1 
    44            df(i,j) = 0.25*(f(i-1,j) + f(i+1,j) + f(i,j-1) + f(i,j+1)) 
    45       &                - f(i,j) 
    46    200 continue 
    47          do 300 j=2,jm-1 
    48          do 300 i=2,im-1 
    49            if (max_error .lt. abs(df(i,j))) then 
    50              max_error = abs(df(i,j)) 
    51            endif 
    52    300 continue 
    53  CSMS$REDUCE(max_error, MAX) 
    54          do 400 j=2,jm-1 
    55          do 400 i=2,im-1 
    56            f(i,j) = f(i,j) + df(i,j) 
    57    400 continue 
    58        enddo 
    59 
    60  CSMS$PARALLEL END 
    61        print *, 'Solution required ',iter,' iterations' 
    62        print *, 'Final error = ', max_error 
    63 
    64        return 
    65        end 

Example 5-1 Two-dimensional decomposition version of Example 2-5. 

The CREATE_DECOMP directive now lists two decomposed dimension (with global sizes im 
and jm).  The halo width for each dimension is 1 in this case.  As discussed in Section 3.2, the 
DISTRIBUTE, PARALLEL, and GLOBAL_INDEX directives are modified to handle the 2-D 
decompositions.  Although the communication patterns required to support 2-dimensional 
decompositions are more complex than the 1-dimensional case, SMS hides all of these details.  
Thus, the EXCHANGE directive is unchanged.  Figure 5-1 shows some sample stencils overlaid 
on a 3x3 processor decomposition of the problem.  The halo regions are the shaded areas.  The 
white boxes are referred to as the "interior" of each process's sub-domain.  The stencil centered 
at global coordinate (3,2) only requires P1 communicate with P2.  However, the stencil 
centered at global coordinate (4,4) requires P5 communicate with both P2 and P4.  Figure 5-2 
and  Figure 5-3 show the full communications pattern for a 2-D exchange.  Notice that the corner 
halo points of the center process are filled with data from the corresponding corner processes in 
the drawing.   
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Figure 5-1 Sample stencils overlaid on a 3x3 process decomposition for the Laplace problem.  The halo 
regions are the shaded areas.  The white boxes are referred to as the "interior" of  each process's sub-domain. 
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Figure 5-2 Schematic of how data are distributed among 9 processes just prior to an exchange operation.  The 
big boxes contain the data.  The boxes on the edges are the halo regions. 
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Figure 5-3 Illustration of the data distribution just after a 2 dimensional exchange.  The halo regions in 
Figure 5-2 have been filled with the data from the corresponding neighboring processes. 

The obvious cases when 2-D decompositions are required occur for problems having fewer 
points in a decomposed dimension than there are processors available.  For instance, Example 
2-5 (page 32) could run on at most 10 processes because the size of the decomposed dimension 
is 10.  Another, more subtle, issue is that adjacent communication only scales when 2-D process 
layouts are used.  Figure 5-4, Figure 5-5, Figure 5-6, and Figure 5-7 show why this is the case for 
exchanges made on a size 16x16 array.   
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Figure 5-4 Schematic of the number of data points sent by each process during an exchange for a 1x4 process 
layout.  In this case, each process sends 16 data points in each of 2 directions for a total of 32. In this figure 
and the three that following, edge processes include halo regions on both sides for illustration purposes even 
though SMS does not currently support periodic boundary conditions. 
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Figure 5-5 Schematic of the number of data points sent by each process during an exchange for a 1x16 
process layout.  In this case, each process sends 16 data points in each of 2 directions for a total of 32. 
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Figure 5-6 Schematic of the number of data points sent by each process during an exchange for a 2x2 process 
layout.  In this case, each process sends 8 data points in each of 4 directions for a total of 32. 
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4x4 Process Layout : 16 Points Sent By Each Process 
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Figure 5-7 Schematic of the number of data points sent by each process during an exchange for a 4x4 process 
layout.  In this case, each process sends 4 data points in each of 4 directions for a total of 16. 
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If only one dimension is decomposed, the number of data points exchanged between neighbors 
remains constant when the number of processes increases from 4 to 16 (and beyond) (Figure 5-4 
and Figure 5-5).  However, if a 2-D decomposition is implemented then when the process layout 
is changed from 2x2 (4 total) to 4x4 (16 total), the number of data points exchanged is halved 
(Figure 5-6 and Figure 5-7).  The general rule is that if square process layouts are used, the 
number of data points communicated scales as Np1 , where Np is the number of processes.  
As seen in Section 3.3.1, SMS tries to make the process layouts as close to square as possible. 

5.1.2 Larger Stencils 

As illustrated in Figure 2-14, the widths of the stencil for the calculation of df in the laplace 
program is one point in each direction.  Since this is the only computation in Laplace requiring 
"exchange", it is clear that the halo widths specified in CREATE_DECOMP must be 1 in the i 
and j dimensions.  However, suppose we modify Example 2-4 as shown in Example 5-2 below.   

     1        program basic_ex_halo2 
     2        include 'basic.inc' 
     3        im = 10 
     4        jm = 10 
     5  CSMS$CREATE_DECOMP(DECOMP_I, <im>, <2>)            
     6        call laplace 
     7        end 
     8 
     9        subroutine laplace 
    10        include 'basic.inc' 
    11        integer i, j, iter 
    12        real max_error 
    13        real tolerance 
    14        parameter (tolerance = 0.001) 
    15  CSMS$DISTRIBUTE(DECOMP_I, <im>) BEGIN 
    16        real f(im,jm), df(im,jm) 
    17  CSMS$DISTRIBUTE END 
    18  CSMS$PARALLEL(DECOMP_I,<i>) BEGIN 
    19        do 100 j=1,jm 
    20        do 100 i=1,im 
    21          f (i,j) = 0.0 
    22          df(i,j) = 0.0                              
    23    100 continue 
    24        do 110 j=1,jm 
    25  CSMS$GLOBAL_INDEX(1) BEGIN 
    26          f( 1,j) = 2.0 
    27          f(im,j) = 2.0 
    28  CSMS$GLOBAL_INDEX END 
    29    110 continue 
    30        do 120 i=1,im 
    31          f(i, 1) = 2.0 
    32          f(i,jm) = 2.0 
    33    120 continue 
    34        iter = 0 
    35        max_error = 2.0 * tolerance 
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    36  C main iteration loop... 
    37        do while ((max_error .gt. tolerance) .and. (iter .lt. 1000)) 
    38          iter = iter + 1 
    39          max_error = 0.0 
    40  CSMS$EXCHANGE(f) 
    41          do 200 j=2,jm-1 
    42          do 200 i=2,im-1 
    43            df(i,j) = 0.25*(f(i-1,j) + f(i+1,j) + f(i,j-1) + f(i,j+1)) 
    44       &                - f(i,j) 
    45    200 continue 
    46          do 300 j=2,jm-1 
    47          do 300 i=2,im-1 
    48            if (max_error .lt. abs(df(i,j))) then 
    49              max_error = abs(df(i,j)) 
    50            endif 
    51    300 continue 
    52  CSMS$REDUCE(max_error, MAX) 
    53          do 400 j=2,jm-1 
    54          do 400 i=2,im-1 
    55            f(i,j) = f(i,j) + df(i,j) 
    56    400 continue 
    57        enddo 
    58 
    59  CSMS$EXCHANGE(df)                                                  
    60        do j = 1, jm                                                 
    61          do i = 3, im-2                                             
    62            f(i,j) = f(i,j) + 2.0*df(i,j) - df(i-2,j) - df(i+2,j)    
    63          end do                                                     
    64        end do                                                       
    65 
    66  CSMS$PARALLEL END 
    67        print *, 'Solution required ',iter,' iterations' 
    68        print *, 'Final error = ', max_error 
    69        
    70        end 

Example 5-2 Modified version of Example 2-5 with additional code that has a stencil width of 2 in the i 
direction. 

For the calculations starting at line 60, the width of the stencil is 2 in the i direction and 1 in the 
j direction as shown in Figure 5-8.   
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 df2(i,j) = 2.0*df(i,j) - df(i-2,j) - df(i+2,j) 

df(i+2,j) df(i-2,j) 

New Stencil 
Point 

New Stencil 
Point 

 

Figure 5-8 Modified stencil for additional calculations in Example 5-2.  This time the stencil width is 2 in the 
i direction. 

The exchanges of the size 2 halo regions are aggregated to reduce latency as shown in Figure 
5-9.   
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Figure 5-9 A illustration showing how data points from two-point thick halo regions are combined into a 
single message that is sent to the neighboring process in order to reduce latency. 

This program now has 2 calculations involving the same dimension of the same decomposition 
with different stencil widths.  SMS handles this by requiring the programmer to make the halo 
width of the decomposition equal to the larger of the two widths.  It is up to the programmer to 
determine the width of the largest stencil required by each dimension of every decomposition.  
The CREATE_DECOMP directive (line 5), of Example 5-2 (page 78) shows the correct halo 
width specification ( <2> ). 

Choosing a single halo width could mean some data are communicated unnecessarily.  The 
exchange at line 40 (Example 5-2) is an example of such inefficiency.  The stencil of the 
computations in loop 200 is still one wide in the i direction.  However, since the halo width of f 
is now 2 in this dimension, one extra halo point on each side for each j will be communicated 
unnecessarily.  This extra communication can be eliminated by using a variant of the 
EXCHANGE directive that only exchanges part of the halo region: 

CSMS$EXCHANGE(f<1:1>) 
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This option to EXCHANGE tells SMS to exchange only the first halo point in the upper and 
lower halo regions. 

If we were to modify Example 5-2 to use a two dimensional decomposition, the 
CREATE_DECOMP directive would look as follows: 

CSMS$CREATE_DECOMP(DECOMP_IJ, <im,jm>, <2,1>) 

Now, the maximum stencil width is 2 in the first decomposed dimension and 1 in the second 
decomposed dimension. 

5.1.3 Miscellaneous 

For exchanges using static memory models the process-local array sizes specified in the 
DECLARE_DECOMP directive must be large enough to include the halo regions.  In the 
program fragment below, the halo size is one.  Since there is a halo region on each side, the 
declared local array size is the global size (im) divided by the number of processes (4) plus 2 to 
accommodate the halo regions and plus 1 since 4 does not divide 30 evenly. 

      program STATIC_MEMORY_EXCHANGE 
      implicit none 
      integer im 
      parameter(im = 30) 
      integer jm 
      parameter(jm = 5) 
CSMS$DECLARE_DECOMP(my_dh, <im/4 + 2 + 1>) 
 

A second point about EXCHANGE is that, for both static and dynamic memory models, the 
number of processes used must be small enough to ensure the size of the interior is greater than 
the halo width in each decomposed dimension. 

Finally, we point out that EXCHANGE automatically implements the synchronization required 
for the parallel code to produce the correct answer.  A process scheduled to receive data from a 
neighbor will wait until the data have fully arrived before proceeding with the next set of 
calculations. 

 

5.2 Optimizations 

In this section, some optimizations are described that can be employed to reduce the number of 
exchanges and the amount of data exchanged in a parallel SMS program. 
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5.2.1 Aggregating Exchanges 

The program SLOW below, uses a statically declared one dimensional decomposition (line 10) 
to distribute the arrays a, b and c which contain adjacent dependencies (lines 44, 45, 52).   In this 
example, a halo thickness of one is defined by CREATE_DECOMP (line 24).  After a series of 
iterations (line 39) a global sum is produced with the REDUCE directive (line 63). 

     1      program SLOW 
     2      implicit none 
     3      integer im 
     4      parameter(im = 30) 
     5      integer jm 
     6      parameter(jm = 5) 
     7      integer iterations 
     8      parameter(iterations = 3) 
     9 
    10  CSMS$DECLARE_DECOMP(my_dh, <im/3 + 2>) 
    11 
    12  CSMS$DISTRIBUTE(my_dh, <im>) BEGIN 
    13        real a(im) 
    14        real b(im,jm) 
    15        real c(im,jm) 
    16  CSMS$DISTRIBUTE END 
    17 
    18        real ysum 
    19 
    20        integer i 
    21        integer j 
    22        integer iter 
    23 
    24  CSMS$CREATE_DECOMP(my_dh, <im>, <1>) 
    25 
    26        ysum = 0.0 
    27        b = 0.0 
    28        c = 0.0 
    29 
    30        do j = 1, jm 
    31 
    32  CSMS$PARALLEL(my_dh, <i>) BEGIN 
    33          do i = 1, im 
    34  CSMS$TO_GLOBAL(<1, i>) BEGIN 
    35            a(i) = real(3*i + 2 + j) 
    36  CSMS$TO_GLOBAL END 
    37          end do 
    38 
    39          do iter = 1, iterations 
    40 
    41  CSMS$EXCHANGE(a) 
    42 
    43            do i = 2, im-1 
    44              b(i,j) = a(i+1) + a(i-1) 
    45              c(i,j) = b(i,j) + c(i,j) 
    46            end do 
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    47 
    48  CSMS$EXCHANGE(b) 
    49  CSMS$EXCHANGE(c) 
    50 
    51            do i = 2, im-1 
    52              a(i) = b(i+1,j) + b(i-1,j) + c(i+1,j) - c(i-1,j) 
    53            end do 
    54 
    55          end do 
    56 
    57          do i = 2, im - 1 
    58            ysum = ysum + a(i) 
    59          end do 
    60 
    61        end do 
    62 
    63  CSMS$REDUCE(ysum, SUM) 
    64 
    65        print *, 'ysum is ', ysum 
    66  CSMS$PARALLEL END 
    67        end 

Example 5-3 A sub-optimal version of a program parallelized using SMS. 

SMS provides the capability to aggregate the exchanges of multiple variables.  If lines 48-49 are 
replaced with 

CSMS$EXCHANGE(b,c) 

then SMS will combine the communications of the corresponding halo regions of b and c as 
shown in Figure 5-10.  Since the number of messages sent is halved, performance on high-
latency machines will improve. 
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Figure 5-10 An illustration of how communications are aggregated to reduce latency for a portion of the 
exchange of Var 1 and Var 2.  The last column of process P1’s variables are communicated as a single 
message to P2 where they are unpacked into the corresponding halo regions.   

5.2.2 Trading Communications for Computations Using HALO_COMP 

Example 5-3 can be further optimized by trading communication for redundant computations in 
the halo region as briefly discussed in the SMS overview paper.  This is done using the 
HALO_COMP directive to modify the ranges of parallel loops to include computations in the 
halo regions.  These extra computations can eliminate the need for some exchanges.   

Figure 5-11, Figure 5-12, and Figure 5-13 illustrate how redundant computations work.  Without 
the HALO_COMP directive, b and c are only computed in interior points using stencils like 
that shown in Figure 5-11.   
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Figure 5-11 Memory layout of  “a” (assuming im=9, jm=3) with sample stencil for calculations of “b” and “c” 
overlaid. 
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Figure 5-12 Memory layout of “b” and “c” with sample stencil for calculation of “a” overlaid.  The halo 
regions of “b” and “c” must be updated via exchange for the calculation of “a” to be executed correctly. 

Halo regions of b and c must then be updated via an exchange for a to be properly computed as 
shown in Figure 5-12.  A computation one step into the halo region (Figure 5-13) requires that a 
have a halo size of two instead of one.  Since process P1 now computes points such as b(4,2) 
and c(4,2), the computation of a(3,2) shown in Figure 5-12 can proceed without having 
exchanged b and c.  However, extra computations must be done since process P2 must also 
perform exactly the same computation for its corresponding points b(4,2) and c(4,2),  
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In this example, the number of exchanges AND the amount of data communicated have been 
reduced.  The amount of data communicated is less because the benefit of not exchanging both b 
and c is only partially offset by the fact that the amount of data communicated in the exchange 
of a has doubled.   
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Figure 5-13 Modified memory layout of “a” with new sample stencil centered in the halo region.  The 
computation of point b(4,2) and c(4,2) effectively updates the halo regions of “b” and “c” so that the 
computation of “a” in Figure 5-12 can be made without an exchange. 

A net improvement in performance by this technique will only be realized if the cost of the 
additional computation by each process is less than the cost of exchanging b and c.  Whether or 
not the code runs faster will, in general, depend on the communication patterns in the program, 
the number of processes used, and the target hardware platform.  Since adjacent communication 
does not scale linearly, improved performance will more likely be achieved for a large number of 
processes on machines where the ratio of communications speed to processor speed is low. 

A version of Example 5-3 that implements redundant calculations is shown in Example 5-4.  The 
HALO_COMP directive on line 43 tells SMS that the enclosed loop should be executed 1 step 
into the halo region in each direction.  This updates b and c sufficiently to satisfy the 
dependencies in the loop at lines 52-54.  DECLARE_DECOMP and CREATE_DECOMP have 
been modified to accommodate the new halo size of 2.  The exchanges of b and c have been 
eliminated. 
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     1        program FASTER 
     2        implicit none 
     3        integer im 
     4        parameter(im = 30) 
     5        integer jm 
     6        parameter(jm = 5) 
     7        integer iterations 
     8        parameter(iterations = 3) 
     9 
    10  CSMS$DECLARE_DECOMP(my_dh, <im/3 + 4>)                      
    11 
    12  CSMS$DISTRIBUTE(my_dh, <im>) BEGIN 
    13        real a(im) 
    14        real b(im,jm) 
    15        real c(im,jm) 
    16  CSMS$DISTRIBUTE END 
    17 
    18        real ysum 
    19 
    20        integer i 
    21        integer j 
    22        integer iter 
    23 
    24  CSMS$CREATE_DECOMP(my_dh, <im>, <2>)                         
    25 
    26        ysum = 0.0 
    27        b = 0.0 
    28        c = 0.0 
    29 
    30        do j = 1, jm 
    31 
    32  CSMS$PARALLEL(my_dh, <i>) BEGIN 
    33          do i = 1, im 
    34  CSMS$TO_GLOBAL(<1, i>) BEGIN 
    35            a(i) = real(3*i + 2 + j) 
    36  CSMS$TO_GLOBAL END 
    37          end do 
    38 
    39          do iter = 1, iterations 
    40 
    41  CSMS$EXCHANGE(a) 
    42 
    43  CSMS$HALO_COMP(<1,1>) BEGIN                                  
    44            do i = 2, im-1 
    45              b(i,j) = a(i+1) + a(i-1) 
    46              c(i,j) = b(i,j) + c(i,j) 
    47            end do 
    48  CSMS$HALO_COMP END                                           
    49 
    50                                                               
    51 
    52            do i = 2, im-1 
    53              a(i) = b(i+1,j) + b(i-1,j) + c(i+1,j) - c(i-1,j) 
    54            end do 
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    55 
    56          end do 
    57 
    58          do i = 2, im - 1 
    59            ysum = ysum + a(i) 
    60          end do 
    61 
    62        end do 
    63 
    64  CSMS$REDUCE(ysum, SUM) 
    65 
    66        print *, 'ysum is ', ysum 
    67 
    68  CSMS$PARALLEL END 
    69 
    70        end 

Example 5-4 A version of Example 5-3 that has been optimized by trading communications for redundant 
calculations in the halo region.  

5.2.3 Pulling Exchanges Outside of Loops 

Program FASTER is still inefficient on high-latency machines because the exchange of a (line 
42) occurs inside the j loop.  To reduce the number of exchanges (thus improving performance) 
the exchange is moved outside the j loop.  This requires promoting a from a one dimension a 
two-dimensional array (line 13) and creating a second j loop (line 44) as shown in Example 5-5.   

     1        program FASTEST 
     2        implicit none 
     3        integer im 
     4        parameter(im = 30) 
     5        integer jm 
     6        parameter(jm = 5) 
     7        integer iterations 
     8        parameter(iterations = 3) 
     9 
    10  CSMS$DECLARE_DECOMP(my_dh, <im/3 + 4>) 
    11 
    12  CSMS$DISTRIBUTE(my_dh, <im>) BEGIN 
    13        real a(im,jm)                                            
    14        real b(im,jm) 
    15        real c(im,jm) 
    16  CSMS$DISTRIBUTE END 
    17 
    18        real ysum 
    19 
    20        integer i 
    21        integer j 
    22        integer iter 
    23 
    24  CSMS$CREATE_DECOMP(my_dh, <im>, <2>) 
    25 
    26        ysum = 0.0 
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    27        b = 0.0 
    28        c = 0.0 
    29 
    30        do j = 1, jm 
    31 
    32  CSMS$PARALLEL(my_dh, <i>) BEGIN 
    33          do i = 1, im 
    34  CSMS$TO_GLOBAL(<1, i>) BEGIN 
    35            a(i,j) = real(3*i + 2 + j)                             
    36  CSMS$TO_GLOBAL END 
    37          end do 
    38        end do                                                     
    39 
    40        do iter = 1, iterations 
    41 
    42  CSMS$EXCHANGE(a) 
    43 
    44          do j = 1, jm                                             
    45 
    46  CSMS$HALO_COMP(<1,1>) BEGIN 
    47            do i = 2, im-1 
    48              b(i,j) = a(i+1,j) + a(i-1,j)                         
    49              c(i,j) = b(i  ,j) + c(i  ,j) 
    50            end do 
    51  CSMS$HALO_COMP END 
    52 
    53            do i = 2, im-1 
    54              a(i,j) = b(i+1,j) + b(i-1,j) + c(i+1,j) - c(i-1,j)   
    55            end do 
    56          end do                                                   
    57 
    58        end do                                                     
    59 
    60        do j = 1, jm                                               
    61          do i = 2, im - 1 
    62            ysum = ysum + a(i,j)                                   
    63          end do 
    64 
    65        end do 
    66 
    67  CSMS$REDUCE(ysum, SUM) 
    68 
    69        print *, 'ysum is ', ysum 
    70 
    71  CSMS$PARALLEL END 
    72 
    73        end 

Example 5-5 A version of Example 5-3 that has been further optimized by modifying some of the serial code.  
Array a has been promoted to two dimensions to allow the exchange to be placed outside of the j loop. 

The amount of data communicated by each process (roughly 2*jm*iterations) is unchanged.  
However, the number of communications is reduced from 2*jm*iterations to 2*iterations.  The 
performance gain from this optimization can be quite dramatic on high latency machines.  The 
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drawbacks of the optimization in this particular case are the increased memory usage (caused by 
the promotion of a) and the slightly increased code complexity. 

5.2.4 Using HALO_COMP and TO_LOCAL To Make Subroutines Do Redundant 
Computations 

We saw in Section 4.3 how the TO_LOCAL directive can be used to parallelize subroutines 
without requiring directives inside the subroutine code.  The approach works by making the 
subroutines operate on the interior of the process local arrays.  Now, suppose we want those 
called routines to do redundant computations in the halo region to avoid communication. 
Example 5-6 shows a modified version of subroutine compute from Example 4-4, illustrating 
how this is done. 

 
    1         subroutine compute 
    2         implicit none 
    3         include 'tran_index.inc' 
    4         integer i, j 
    5         integer istart, iend, jstart, jend 
    6   CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN 
    7         integer x(im,jm), y(im,jm) 
    8   CSMS$DISTRIBUTE END 
    9    
   10   CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN 
   11    
   12   csms$halo_comp(<1,1>, <1,1>) begin 
   13         do 100 j=1,jm 
   14         do 100 i=1,im 
   15   CSMS$TO_GLOBAL(<1,i>, <2,j>) BEGIN 
   16           x(i,j) = (100 * i) + j 
   17   CSMS$TO_GLOBAL END 
   18     100 continue 
   19   csms$halo_comp end 
   20    
   21         y = 0.0 
   22    
   23         istart = 1 
   24         iend   = im - 1 
   25         jstart = 2 
   26         jend   = jm 
   27    
   28   csms$to_local(<1, im     : size  >, <2, jm   : size  >, 
   29   csms$>        <1, istart : lbound>, <1, iend : ubound>, 
   30   csms$>        <2, jstart : lbound>, <2, jend : ubound>) begin 
   31    
   32   csms$halo_comp(<1,1>, <1,1>) begin 
   33    
   34         call physics(x, im, jm, istart, iend, jstart, jend, y) 
   35    
   36   csms$halo_comp end 
   37    
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   38   csms$to_local end 
   39    
   40         do j = 2, jm 
   41           do i = 1, im - 1 
   42          x(i,j) = y(i,j) + y(i+1,j-1) 
   43           end do 
   44         end do 
   45    
   46   CSMS$SERIAL BEGIN 
   47         do j = 1, jm 
   48           write(*,'(16i5)') (x(i,j),i=1,im) 
   49         end do 
   50   CSMS$SERIAL END 
   51    
   52   CSMS$PARALLEL END 
   53         return 

54 end 

Example 5-6 Modified version of Example 4-4 that passes lower and upper bounds into subroutine 
physics so that it does redundant computations for one point in the halo region for each dimension and 
for each direction. 

 

Since the call to physics is now contained within both a TO_LOCAL and HALO_COMP 
directive, the effect is to change the lower and upper bounds passed to the subroutine so that it 
will do redundant computations for one point in the halo region for each direction, for each 
decomposed dimension.  Figure 5-14 shows the new table of lower and upper bounds (compare 
to the table in Figure 4-1).  Now, following the call to physics, variable y contains valid data 
one point into the halo region.  Consequently, the loop at lines 40-44 produces the correct 
answer. 

 
 
                                   Processor       Decomposed      Size   Lbound    Ubound 
                                                           dimension 
 
                                         P1                      1                  6          1              5 
                                         P1                      2                  5          1              4 
                                         P2                      1                  6          2              6 
                                         P2                      2                  5          1              4 
                                         P3                      1                  6          1              5 
                                         P3                      2                  5          2              5 
                                         P4                      1                  6          2              6 
                                         P4                      2                  5          2              5 
  

Figure 5-14 Table of sizes, lower bounds and upper bounds for Example 5-6.  Compare the lower bounds and 
upper bounds to the values in the table in Figure 4-1.  The sizes are unchanged.
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5.3 Debugging Adjacent Dependencies: CHECK_HALO 

The analysis of adjacent dependencies in a serial code and the process of accurately placing 
EXCHANGE and HALO_COMP directives are highly prone to error.  To help the user track 
down such errors, the CHECK_HALO directive and associated SMS_CHECK_HALO 
environment variable can be used to check if all or part of a halo variable is up-to-date.  Suppose, 
in Example 5-4, the user forgot to include the HALO_COMP directives on lines 43 and 48.  
When the program is run, it does not produce the correct answer for ysum.  The user can observe 
that the loop on lines 52-54 requires one point of the lower and upper halo regions of b and c up-
to-date.  To check this assumption, the following directive can be added at line 51: 

CSMS$CHECK_HALO(b<1:1>, c<1:1>, 'LOOP 52') 

If the SMS_CHECK_HALO is set to "ON", the generated code checks if the afore-mentioned 
halo points are up-to-date.  In this case, since the halo regions are not up-to-date, the SMS 
program will generate the following error message and terminate: 

LOOP 52 Halo check failed for var : b 

Suppose the HALO_COMP directives are included as shown on lines 43 and 48. This time the 
check passes so no error messages are generated and the program continues.  Suppose the user 
includes the HALO_COMP directives on lines 43 and 48 and specifies the CHECK_HALO 
directive as follows: 

CSMS$CHECK_HALO(b, c, 'LOOP 52') 

This form of the directive tells SMS to check the entire halo region.  Since, for the lower and 
upper halo regions,  only one of the halo points are up-to-date, the program will terminate with 
the same error message. 

The directive can be added to the code on a permanent basis.  When SMS_CHECK_HALO is 
“ON”, CHECK_HALO adds costly communication. However, if the SMS_CHECK_HALO 
environment variable is set to something other than "ON" then the halo checks are skipped; 
maximizing performance.  If, after a code change, the program generates the wrong answer, the 
halo checks can be turned back on to help isolate the problem. 
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6 Handling Complex Dependencies using TRANSFER 

Section 2.7 introduced the TRANSFER directive and explained how it could be used to handle 
complex dependencies in more than one dimension.  In Section 6.1, we show how TRANSFER 
can be used when either the source or destination array are non-decomposed.  In Section 6.2, we 
examine how TRANSFER can be applied to the parallelization of spectral NWP models.   

6.1 Further Details about TRANSFER 

While TRANSFER can be used to generate communications to transpose two arrays decomposed 
in one or more dimensions, it can also be used when either the source or destination arrays are 
not decomposed.  If the destination array is not decomposed but the source is then the 
TRANSFER directive effectively implements a “gather” of the source into the destination as 
shown in Figure 6-1.  After the transfer, the entire array is replicated on each process.  Since the 
local data for each process must be communicated to all other processes, this operation can be 
quite expensive. 

 

 

  

  

“source” 

“source” 

“destination” 

“destination” 

 

Figure 6-1 Schematic of the behavior of TRANSFER when the source array is decomposed and the 
destination array is NOT decomposed.  The effect is to “gather” the process-local data from the source array 
into the globally sized destination array. 

If the source array is not decomposed but the destination array is decomposed then TRANSFER 
performs an "extract" of data from the source into the destination as shown in Figure 6-2.  Note 
that no communication is needed in this case since each process has access to all needed data to 
begin with.   
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“source” “destination” 

 

Figure 6-2 Schematic of the behavior of TRANSFER when the source array is NOT decomposed and the 
destination array is decomposed.  The effect is to “extract” the appropriate data from the globally sized 
source array into the process-local destination array. 

As in the case of EXCHANGE, TRANSFERs can be aggregated as follows to reduce latency: 

CSMS$TRANSFER(<source1, destination1>, <source2, destination2>) BEGIN 

      Serial code here 

CSMS$TRANSFER END 

Some dependencies make decomposition in any dimension difficult.  The program in Example 
6-1 below shows how TRANSFER can be used to avoid parallelization of such code.  The idea is 
to use TRANSFER to gather the data into global arrays (line 28), execute the complex code on 
the global data (line 35), and then extract from the global data the correct process-local pieces 
(line 38). 

     1        program TRANSFER2 
     2        implicit none 
     3 
     4        integer im 
     5        parameter(im=60) 
     6 
     7        integer jm 
     8        parameter(jm=90) 
     9 
    10        integer km 
    11        parameter(km=5) 
    12 
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    13  CSMS$DECLARE_DECOMP(DECOMP_IJ, <im/2, jm/2>) 
    14 
    15  CSMS$DISTRIBUTE(DECOMP_IJ, im) BEGIN 
    16        real u(km, im,jm) 
    17  CSMS$DISTRIBUTE END 
    18 
    19  CSMS$INSERT      real u_global(km,im,jm) 
    20 
    21  C BEGIN 
    22 
    23  CSMS$CREATE_DECOMP(DECOMP_IJ, <im,jm>, <0,0>) 
    24 
    25        call manageable_dependencies(u) 
    26 
    27  C This is a "gather". 
    28  CSMS$TRANSFER(<u, u_global>) 
    29 
    30  C parallelize later, maybe 
    31  CSMS$REMOVE BEGIN 
    32        call nasty_dependencies(u) 
    33  CSMS$REMOVE END 
    34 
    35  CSMS$INSERT      call nasty_dependencies(u_global) 
    36 
    37  C This is an "extract". 
    38  CSMS$TRANSFER(<u_global, u>) 
    39 
    40        call more_manageable_dependencies(u) 
    41 
    42        end 

Example 6-1 Example of how TRANSFER can be used to avoid parallelization of code containing complex 
dependencies. 

Notice this variation of the TRANSFER syntax does not have a BEGIN and END directive (no 
serial code is replaced in this case).  This example illustrates how SMS can be used to parallelize 
a program in pieces while still producing the correct answer.  If the subroutine 
nasty_dependencies consumes a small amount of serial run-time and the parallel code 
need only scale to a few processes then the modeler may choose never to parallelize this routine. 
The INSERT and REMOVE directives are used to replace the serial code that references u with 
code that references u_global.  These directives will be explained in Section 8.2.  Section 8.1 
will show how to avoid this parallelization even more easily using the SERIAL directive, 
although possibly at the cost of performance. 

   

6.2 Applying TRANSFER to Spectral NWP Models 

Many spectral NWP models have multiple phases of computation that repeat in a fixed pattern.  
Phases often have different optimal decompositions, so performance may be maximized by using 
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multiple decompositions and transferring between them.  Consider the case of one dimensional 
decompositions for these models.  The physical parameterizations contain complex dependencies 
in the vertical.  This makes it efficient to decompose in one of the horizontal dimensions.  At the 
same time, many computer system vendors provide highly optimized assembly FFT libraries that 
far out-perform anything that can be done with hand-tuned Fortran code.  Taking advantage of 
this serial code requires decomposing in a dimension other than i.  So, typically, the data are 
decomposed in the j dimension during physics and FFT computations.  This is decomposition 
"a" already seen in Figure 3-1.  The Legendre transformations contain complex dependencies in 
the j dimension.  Therefore, a second decomposition in either i (decomposition "b" in Figure 
3-1) or k (decomposition "c" in Figure 3-1) is needed for optimal performance during these 
calculations.  The TRANSFER directive provides the means to transpose the data from 
decomposition "a" to ("b" or "c") and back again. 

A future release of this users guide will include an example illustrating how TRANSFER can be 
used to help parallelize a simple spectral code. 
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7 Handling Global Dependencies Using REDUCE 

In Section 2.3, we saw how the REDUCE directive was used to implement communication 
needed to do global summations and maxima.  In this section we examine other forms of the 
REDUCE directive.  In addition to global summations and maxima, the REDUCE directive can 
be used to generate global minima.  Reductions of arrays are also supported.  Section 7.1 
discusses these points.  As we will see, the form of REDUCE introduced in Section 2.3 (which 
will be referred to as "Standard Reductions") does not necessarily produce the bit-wise exact 
same answer as the serial code for global summations of floating point numbers.  Section 7.2 
introduces a second form of REDUCE called "Bit-wise Exact" that does produce the bit-wise 
same answer, regardless of the number of processes. 

7.1 More on Standard Reductions 

Example 7-1 shows additional examples of standard reductions.  Global minima are generated by 
specifying the keyword MIN (line 52).  Also notice that reductions can be aggregated in the 
same way as exchanges (line 50).  One of the variables reduced is the non-decomposed array 
xsum (line 50).   The summation of xsum looks like the following: 

Xsum_global(1) = Xsum_local1 (1) + Xsum_local2 (1) + ... 
Xsum_global(2) = Xsum_local1 (2) + Xsum_local2 (2) + ... 
     . 
     . 
     . 

where Xsum_localP(j) is the value of process-local xsum(j) on process P and 
Xsum_global is the value of xsum after the global summation is complete. 

     1        program REDUCTIONS 
     2        implicit none 
     3        include 'basic.inc' 
     4 
     5        im = 50 
     6        jm = 2 
     7 
     8  CSMS$CREATE_DECOMP(DECOMP_I, <im>, <0>) 
     9 
    10        call DO_THEM 
    11 
    12        end 
    13 
    14        subroutine DO_THEM 
    15        implicit none 
    16        include 'basic.inc' 
    17 
    18  CSMS$DISTRIBUTE(DECOMP_I, <im>) BEGIN 
    19        real x(im,jm) 
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    20        real y(im,jm) 
    21  CSMS$DISTRIBUTE END 
    22 
    23        real xsum(jm) 
    24        real ysum 
    25        real xmin 
    26        real xmax 
    27 
    28        integer i 
    29        integer j 
    30 
    31        open (10, file='reduce_data', form='unformatted') 
    32        read (10) x, y 
    33        close(10) 
    34 
    35  CSMS$PARALLEL(DECOMP_I, <i>) BEGIN 
    36        xsum = 0.0 
    37        ysum = 0.0 
    38        xmax = x(1,1) 
    39        xmin = x(1,1) 
    40 
    41        do j = 1, jm 
    42          do i = 1, im 
    43            xsum(j) = xsum(j) + x(i,j) 
    44            ysum = ysum + y(i,j) 
    45            xmax = max(xmax, x(i,j)) 
    46            xmin = min(xmin, x(i,j)) 
    47          end do 
    48        end do 
    49 
    50  CSMS$REDUCE(xsum, ysum, SUM) 
    51  CSMS$REDUCE(xmax,       MAX) 
    52  CSMS$REDUCE(xmin,       MIN) 
    53 
    54        print * 
    55        print *, 'Global values' 
    56        do j = 1, jm 
    57          write(*,100) j, xsum(j) 
    58        end do 
    59        write(*,150) ysum 
    60        write(*,200) xmax 
    61        write(*,300) xmin 
    62 
    63   100  format('j ', i2, ' xsum = ', F13.5) 
    64   150  format('ysum = ', F13.5) 
    65   200  format('xmax = ', F13.5) 
    66   300  format('xmin = ', F13.5) 
    67 
    68  CSMS$PARALLEL END 
    69 
    70        return 
    71        end 

Example 7-1 Program showing additional examples of how the REDUCE directive can be used. 
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If we were to modify Example 7-1 so that the j dimension is also decomposed then xsum would 
be a decomposed variable.  In this case, the reduction of xsum would FAIL because SMS does 
not currently support reductions that produce decomposed variables.  This would require doing 
the reduction over a subset of the processes.  Support for such reductions will be added in a 
future SMS release.   

When run with 2 processes, program REDUCTIONS yields the following results: 

 Global values 
j  1 xsum =    1258.28589 
j  2 xsum =    1310.71448 
ysum =   -2464.28540 
xmax =     100.00000 
xmin =    -100.00000 

However, when run with 4 processes, the results are : 

 Global values 
j  1 xsum =    1258.28577 
j  2 xsum =    1310.71436 
ysum =   -2464.28613 
xmax =     100.00000 
xmin =    -100.00000 

Notice that the values for xsum and ysum are slightly different between the 2 and 4 process 
runs.   We will now see why this is the case. 

7.2 Bit-wise Exact Reductions 

The differences in results in Example 7-1 are due to round-off error in the floating point addition.  
The numbers are added in a different order in the 4 process case as compared to the 2 process 
case because, as discussed in Section 2.3.3, the sums are first computed locally before being 
combined.  In NWP models (which are non-linear systems), if the global sums feed back into the 
main model equations, these slight errors can grow and propagate; potentially yielding 
completely different model predictions for runs with differing numbers of processes.   

For testing purposes, it is useful to avoid these round-off errors.  To do this, SMS offers a form 
of REDUCE that produces the bit-wise exact same answer for any number of processes.  
Example 7-2 below shows how this works.   

     1        program EXACT_REDUCTIONS 
     2        implicit none 
     3        include 'basic.inc' 
     4 
     5        im = 50 
     6        jm = 2 
     7 
     8  CSMS$CREATE_DECOMP(DECOMP_I, <im>, <0>) 
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     9 
    10        call DO_THEM 
    11 
    12        end 
    13 
    14        subroutine DO_THEM 
    15        implicit none 
    16        include 'basic.inc' 
    17 
    18  CSMS$DISTRIBUTE(DECOMP_I, <im>) BEGIN 
    19        real x(im,jm), y(im,jm) 
    20  CSMS$DISTRIBUTE END 
    21 
    22        real ysum 
    23 
    24        integer i 
    25        integer j 
    26 
    27        open (10, file='reduce_data', form='unformatted') 
    28        read (10) x, y 
    29        close(10) 
    30 
    31  CSMS$PARALLEL(DECOMP_I, <i>) BEGIN 
    32 
    33  CSMS$REDUCE(<y, ysum>, SUM) BEGIN 
    34        ysum = 0.0 
    35        do j = 1, jm 
    36          do i = 1, im 
    37            ysum = ysum + y(i,j) 
    38          end do 
    39        end do 
    40  CSMS$REDUCE END 
    41 
    42        print * 
    43        print *, 'Global values' 
    44        write(*,150) ysum 
    45 
    46   150  format('ysum = ', F13.5) 
    47 
    48  CSMS$PARALLEL END 
    49 
    50        return 
    51        end 

Example 7-2 Program illustrating the bit-wise exact form of the REDUCE directive. 

The modified REDUCE syntax can be see on lines 33 and 40.  The syntax requires a BEGIN and 
END directive.  The BEGIN directive lists the variable being summed (y) and the resulting 
global sum (ysum).  The keyword SUM is also included but is, in general, optional since this 
version of REDUCE only supports global sums.  The serial code between the two directives 
MUST sum y and store the result in ysum.  SMS replaces these calculations with code that 
gathers each process's piece of y into a globally-sized (replicated) variable and then sums the 
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result in the correct order.  Conceptually, the generated parallel code would look like the 
following: 

      call GATHER(y, y_global) 
      ysum = 0.0 
      do j = 1, jm_global 
        do i = 1, im_global 
     ysum = ysum + y_global(i,j) 
   end do 
      end do 

The "gather" operation is done in the same way as TRANSFER was used to gather variables as 
discussed in Section 6.1.  Since the gather operation requires communicating the entire contents 
of y to all processes, this form of global sum is significantly less efficient than the "Standard" 
form.  In that case, only the process-local scalar sums were communicated to all the processes. 

Even in the bit-wise exact form, the REDUCE directive will only produce bit-wise exact sums if 
an environment variable called SMS_BITWISE is set to the value EXACT.  Running 
EXACT_REDUCE in a c-shell environment might look as follows: 

>> setenv SMS_BITWISE EXACT 
>> smsRun 2 exact_reduce 
SMS:  BITWISE EXACT reductions will be used when requested. 
 Global values 
ysum =    -2464.28418 

Notice that the message printed by SMS regarding reductions now indicates that bit-wise exact 
reductions will be used. 

If SMS_BITWISE is NOT set to EXACT then the effect of the REDUCE directive is the same as 
in the "standard" reduction; each process computes a local sum of y and the resulting scalars are 
summed across the processes. 

>> setenv SMS_BITWISE INEXACT 
>> smsRun 2 exact_reduce 
SMS:  Standard reductions will be used. 
 Global values 
ysum =    -2464.28540 

Notice that the answer is the same as that seen in Example 7-1 for the 2 process case. 

An important subtle point to make about the bit-wise exact syntax is that the REDUCE 
BEGIN/END directives and enclosed code MUST be contained within a PARALLEL region.  
Otherwise, in Example 7-2, when SMS_BITWISE is NOT set to EXACT, the global versions of 
the loops starting at line 35 would execute even though y is decomposed; generating an out-of-
bounds error.  In actuality, SMS detects this mistake and generates the following syntax error 
message: 
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    Bit-wise exact reductions must be in a parallel region. 

In summary, the "bit-wise exact" form of global summation is valuable for testing purposes, 
particularly for non-linear systems.  However, for long model runs, when optimal performance is 
important, the "standard" form of REDUCE will likely be more appropriate because it is much 
faster.  The programmer can use the bit-wise exact form of REDUCE in the code and then decide 
at run-time, with the SMS_BITWISE environment variable, which reduction to use. 
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8 Other  Directives 

There will be instances where the SMS directives seen so far are not sufficient to parallelize a 
section of code.  Several directives are introduced to handle these cases.  They are: SERIAL, 
INSERT, REMOVE, and IGNORE.  These are usually the directives of last resort. 

8.1 SERIAL 

Many cases where the previously discussed SMS directives can not be easily applied to a piece 
of serial code occur in portions of models where efficient performance is not critical.  One 
example is initialization.  For long model runs, the effects of inefficient code during initialization 
become negligible.  Diagnostic print messages are another case.  If the user can turn off 
diagnostic messages when high performance is needed then the presence of inefficient parallel 
code that generates these messages does not pose a problem.  We saw a third case in Example 
6-1 where it may be acceptable to leave a piece of the original code un-parallelized because its 
computations represent only a small fraction of the total run-time of the program. 

The SERIAL directive is the easiest way to generate code that produces the right answer in these 
cases.  The directive defines a region over which serial computations will be done.  The directive 
looks as follows: 

CSMS$SERIAL BEGIN 
 
    Code to run serially 
 
CSMS$SERIAL END 

Fundamentally, the code contained between the SERIAL BEGIN and END directives is executed 
by one processor; just as if the code were being run serially instead of as part of a parallel SMS 
program.  For the code to produce the correct answer, it must operate on global, not decomposed 
arrays.  Therefore, any decomposed arrays referenced within the serial region must be gathered 
into global equivalents before the designated processor executes the code.  After the code is 
executed, any of these gathered global arrays that are modified must be scattered back to all the 
processes.  In addition, any non-decomposed variables that have been modified must be 
broadcast to all the processes.  Since determining what data have been modified is non-trivial, 
particularly in the case where they are modified via subroutine call, SMS currently 
gathers/scatters all decomposed variables and broadcasts all non-decomposed variables 
referenced in the code between the SERIAL BEGIN/END.  This communication causes the code 
to run even more slowly than the original serial code. 

In Example 8-1, x and y are decomposed while z is not.  The subroutine calls at lines 39-40 
read in x and z using C language routines.  These routines cannot be handled by SMS.  The 
print statement at line 41 could be handled by using TRANSFER to gather y into a global 
variable (call it y_global) and then printing y_global(2,2).  However, application of the 
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SERIAL directive is simpler.  PPP generates code that gathers x and y into global variables.  A 
designated processor then executes the code at lines 39-41.  Finally, the generated code scatters 
x and y and broadcasts the value of z.  When high performance is desired, the user can avoid 
this poorly performing code by setting ENABLE_DIAGS to .false.  

[Include file: serial.inc] 
      1      integer im,jm 
      2      common /sizes_com/ im,jm 
      3 CSMS$DECLARE_DECOMP(DECOMP_IJ)   
 
[Source file: serial1.f]    
      1       program SERIAL 
      2  
      3       include 'serial.inc' 
      4  
      5       integer i 
      6       integer j 
      7  
      8       im = 5 
      9       jm = 4 
     10  
     11 CSMS$CREATE_DECOMP(DECOMP_IJ, <im,jm>, <0,0>) 
     12  
     13       call DO_IT 
     14  
     15       end 
     16  
     17       subroutine DO_IT 
     18       include 'serial.inc' 
     19  
     20 CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN 
     21       real x(im,jm) 
     22       real y(im,jm) 
     23 CSMS$DISTRIBUTE END 
     24       real z 
     25       logical ENABLE_DIAGS 
     26       ENABLE_DIAGS = .true. 
     27  
     28       open(10, file='yin', form='unformatted') 
     29       read(10) y 
     30       close(10) 
     31  
     32 C Some parallel computations 
     33 C          . 
     34 C          . 
     35 C          . 
     36  
     37       if (ENABLE_DIAGS) then 
     38 CSMS$SERIAL BEGIN 
     39         call READ_2D_ARRAY_USING_C(x, im, jm) 
     40         call READ_SCALAR_USING_C(z) 
     41         print *, 'y(2,2), z ', y(2,2), z 
     42 CSMS$SERIAL END 
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     43       end if 
     44 C More parallel calculations 
     45            . 
     46            . 
     47       return 
     48       end 

Example 8-1 A sample program showing how the SERIAL directive can be used to generate correct parallel 
code in a simple fashion when other SMS directives will not suffice. 

 

Example 8-2 shows a modified version of Example 6-1 that uses the SERIAL directive.  The 
solution that uses the SERIAL directive is much simpler. 

 

     1        program TRANSFER3 
     2        implicit none 
     3 
     4        integer im 
     5        parameter(im=60) 
     6 
     7        integer jm 
     8        parameter(jm=90) 
     9 
    10        integer km 
    11        parameter(km=5) 
    12 
    13  CSMS$DECLARE_DECOMP(DECOMP_IJ, <im/2, jm/2>) 
    14 
    15  CSMS$DISTRIBUTE(DECOMP_IJ, im) BEGIN 
    16        real u(km, im,jm) 
    17  CSMS$DISTRIBUTE END 
    18 
    19    
    20  C BEGIN 
    21 
    22  CSMS$CREATE_DECOMP(DECOMP_IJ, <im,jm>, <0,0>) 
    23 
    24        call manageable_dependencies(u) 
    25 
    26  C parallelize later, maybe 
    27  CSMS$SERIAL BEGIN 
    28        call nasty_dependencies(u) 
    29  CSMS$SERIAL END 
    30 
    31        call more_manageable_dependencies(u) 
    32 

33 end 
 

Example 8-2.  Simpler version of Example 6-1 using the SERIAL directive. 
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Although useful, the serial directive has some important restrictions.  One is that subroutines 
called from within a serial region may not modify common block variables unless they are 
passed as arguments.  So suppose in Example 8-1, we insert 

      call sub1 

after line 38. Further suppose sub1 looks as follows: 

      subroutine sub1 
      real xc 
      common /com1/ xc 
      xc = 2.0 
      return 
      end 

PPP has no way of knowing that xc has to be broadcast before the end of the serial region 
because it does no inter-procedural analysis.  If xc were an argument passed to sub1 then the 
SERIAL directive could be used. 

A second case where a SERIAL directive cannot be used is shown in Example 8-3.  Here, the 
constant 2 is passed to subroutine DO_IT.  Since DO_IT calls a C routine that uses dummy 
argument n, a SERIAL directive would normally be required to handle this.  However the 
SERIAL directive generates a broadcast of dummy argument n.  This broadcast will attempt to 
write to variable n.  Since variable n is the constant 2, the result will be, at best, a core dump.  
The solution would be to assign 2 to a variable in the main program and pass the variable to 
subroutine DO_IT.   

      1       program SERIAL 
      2 
      3       include 'serial.inc' 
      4 
      5       integer i 
      6       integer j 
      7 
      8       im = 5 
      9       jm = 4 
     10 
     11 CSMS$CREATE_DECOMP(DECOMP_IJ, <im,jm>, <0,0>) 
     12 
     13       call DO_IT(2) 
     14 
     15       end 
     16 
     17       subroutine DO_IT(n) 
     18 
     19       integer n 
     20 
     21 CSMS$SERIAL BEGIN 
     22       call c_routine(n) 
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     23 CSMS$SERIAL END 
     24 
     25       return 
     26       end 
 

Example 8-3  Example code where use of the SERIAL directive generates parallel code that fails to run 
properly. 

 

8.2 INSERT and REMOVE 

Two directives, INSERT and REMOVE, are used to modify source code directly.  Working 
together, these directives are very useful for translating code that cannot be converted using other 
SMS directives.  Each line that the user wishes to insert must be prefaced by INSERT.  The 
inserted code that follows must adhere to Fortran 77 fixed format rules.  REMOVE removes all 
text between the directive’s BEGIN and END statements. 

CSMS$REMOVE BEGIN 
Code that will not be executed in the SMS program 
CSMS$REMOVE END 
CSMS$INSERT      Code that will be executed in the SMS program 
 

Example 6-1 showed how these directives can be used. 

 

8.3 IGNORE  

IGNORE is another directive used to manipulate code directly.  This directive instructs PPP to 
ignore any text between the directive’s BEGIN and END.  This allows the user to prevent 
modifications of the serial code by PPP.   

CSMS$PARALLEL(dh,<i>,<j>) BEGIN 
      do 200 i=1, nx 
        do 200 j=1, ny 
          z(i,j,k) = z(i,j,k)+ y(i,j,k) 
200 continue 
CSMS$IGNORE BEGIN 
      do 300 i=1,3 
  call smooth(z) 
300 continue 
CSMS$IGNORE END 
CSMS$PARALLEL END 
 

Example 8-4.  Using IGNORE to prevent PPP translation. 
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In Example 8-4, the enclosing parallel region around the 200 loop will ensure translation of the 
loop variable “i” to a local value.  However, we do not wish to translate the 300 loop because “i” 
is used to iterate on the function “smooth”.  To avoid translation of this loop, the IGNORE is 
used.  Optionally, the parallel region could be ended before the 300 loop and then started again 
after the iteration loop ends. 
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9 I/O 

One of the most powerful features of SMS is its ability to support most types of I/O without 
requiring any directives.  In particular, this is the case for unformatted I/O of scalars and 
complete arrays, as will be discussed in Section 9.1.  The fact that communication patterns for 
I/O of decomposed and non-decomposed arrays differ is hidden from the programmer.  In either 
case, SMS automatically generates the communication needed to read or write data to or from 
disk in the same sequence as the serial code would have done it, regardless of the number 
processes used.  By default, SMS assumes the data are stored in native Fortran binary format on 
disk.  However, SMS provides environment variables that can be set to change this default as 
discussed in Section 9.1.   

The I/O of pieces of arrays do require special attention as will be discussed in Section 9.2.  
Formatted input is, for the most part, handled automatically.  However, there are some 
limitations that will be described in Section 9.3.  As discussed in previous sections, formatted 
output sometimes requires the programmer to specify if and how the data should be printed.  
SMS allows the user to make these decisions by providing several print modes as will also be 
discussed in 9.3.  Finally, SMS offers several easy-to-use methods for improving I/O 
performance as discussed in Section 9.4.   

9.1 General Unformatted I/O 

Figure 9-1 illustrates dependencies for read and write of a simple one-dimensional decomposed 
array.  During a read, data from a single file must be parceled out to each process.  This type of 
communication pattern is called "scatter".  During a write, data from each process must be 
combined in the proper order and written to disk.  This type of communication pattern is a 
different form of "gather" than that seen for TRANSFER and bit-wise exact REDUCE.  In this 
case, instead of gathering the data into a global variable that is replicated in memory on all 
processes, it is gathered into a single file on disk.  "Proper order" means the data must be read 
from or written to disk in the same sequence as the serial code would have done it.  Though it 
appears quite simple in Figure 9-1, the data reorganization required to match serial ordering in 
files can be quite complex, especially for two-dimensional decompositions or when the 
decomposed arrays have halo regions (Figure 9-2).  Additionally, when variables being input 
have halo regions associated with them, these regions will be automatically updated by SMS.   
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Figure 9-1 Schematic of the input and output of a decomposed array.  On input, one process reads the global 
data from disk.  The appropriate sections of the global array are then “scattered” to each process.  On 
output, the decomposed data are gathered into a global array and then written to disk. 
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Figure 9-2 Schematic of the re-ordering required to write and read two-dimensionally decomposed data to 
disk in the same order as the serial code would write it.  Special care has to be taken to write the only the 
interior of each process-local domain and not the halo data.  The halo regions are filled during the read 
operations. 
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Figure 9-3 illustrates dependencies for read and write of a non-decomposed variable.  During a 
read, a copy of data from a single file must be sent to each process.  This type of communication 
pattern is called "broadcast".  During write, it is only necessary to write data from a single 
process because each process should have an identical copy of the variable. 

 

 

P1 P2 P3

g 

Read (“broadcast”) 

Write (“root”) 

real g 

 

Figure 9-3 Schematic of the input and output of a non-decomposed array.  On input, one process reads the 
data from disk.  The data are then replicated on all other processes.  On output, a designated “root” process 
writes the data to disk. 

 

Example 9-1 demonstrates unformatted I/O of both decomposed and non-decomposed variables. 

[Include file:  io.inc] 
 
 1        integer im, jm 
 2        common /sizes_com/ im, jm 
 3  CSMS$DECLARE_DECOMP(DECOMP_IJ) 
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[Source file:  binary.f] 
 
 1        program binary_io 
 2        include 'io.inc' 
 3        im = 10 
 4        jm = 5 
 5  CSMS$CREATE_DECOMP(DECOMP_IJ, <im,jm>, <1,0>) 
 6        call write_data 
 7        end 
 8 
 9        subroutine write_data 
10        include 'io.inc' 
11        integer i, j 
12        real scale 
13  CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN 
14        integer x(im,jm), y(im,jm) 
15  CSMS$DISTRIBUTE END 
16  CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN 
17        do j=1,jm 
18          do i=1,im 
19  CSMS$TO_GLOBAL(<1,i>, <2,j>) BEGIN 
20            x(i,j) = (100 * i) + j 
21            y(i,j) = mod(i,2) 
22  CSMS$TO_GLOBAL END 
23          end do 
24        end do 
25  CSMS$PARALLEL END 
26        scale = -1.0 
27        open (17,file='io1_out.dat',form='unformatted') 
28        write (17) x, y, scale 
29        close (17) 
30 
31        open (18,file='io1_out.dat',form='unformatted') 
32        read  (18) x, y, scale 
33        close (18) 
34        return 
35        end 

 Example 9-1 Program that does output of both decomposed and non-decomposed data.  No additional 
directives are required for the correct output to be produced,  regardless of the number of  processes. 

In Example 9-1, SMS automatically translates all the read and write statements for both 
decomposed arrays x and y and non-decomposed scalar scale to the appropriate parallel I/O 
operations.  When automatically generating parallel I/O operations, PPP uses information in the 
DISTRIBUTE directives to determine how to generate communications to satisfy the I/O 
dependencies.  Notice that any types of decomposed or non-decomposed variables can be mixed 
in a single write or read statement.  It is not necessary to reorganize existing serial read or write 
statements to take advantage of automatic parallelization by SMS.   

By default, SMS assumes unformatted files are stored in native FORTRAN binary format.  The 
default behavior can be modified using the following environment variables: 
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SMS_READ_FORMAT 
SMS_WRITE_FORMAT 
SMS_IO_FORMAT 

 

If the user specifies both SMS_IO_FORMAT and SMS_READ_FORMAT then 
SMS_READ_FORMAT takes precedence.   

 If the user specifies both SMS_IO_FORMAT and SMS_READ_FORMAT then the following 
warning will be printed at the beginning of the run: 

SMS: Warning!  SMS_IO_FORMAT ignored; SMS_READ_FORMAT takes precedence. 

The same holds for SMS_WRITE_FORMAT. 

The currently available (case insensitive)  formats are: 

IBM 
SUN 
SGI 
FUJITSU 
HP 
DEC 
COMPAQ 
IA32 
MPI 
MPI_EXTERNAL 
EXTERNAL 
SMS 

Note that, in many cases, file formats with different names are actually the same format. For 
example, SGI and SUN are really the same format.  It is also important to point out that MPI, 
MPI_EXTERNAL, EXTERNAL, and SMS all refer to the portable MPI I/O external format.  
The advantage to using this format is that any file written by an SMS program may be read by 
any other SMS program on any other machine.  This is true regardless of the number of 
processes used on either machine because SMS preserves serial data ordering. 

To convert data files from one format to another, simply write a serial program that reads and 
writes the data, compile and link with SMS and then set the afore-mentioned environment 
variables appropriately. 

9.2 Unformatted I/O of Elements of Decomposed Arrays. 

Some NWP models require I/O of pieces of decomposed arrays.  We saw in Section 8.1 how the 
SERIAL directive could be used to do this. Example 9-2 shows a more efficient solution to this 
problem. 
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 1        program WRITE_POINTS 
 2        include 'io.inc' 
 3        im = 10 
 4        jm = 5 
 5  CSMS$CREATE_DECOMP(DECOMP_IJ, <im,jm>, <1,0>) 
 6        call compute 
 7        end 
 8 
 9        subroutine compute 
10        include 'io.inc' 
11  CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN 
12        integer x(im,jm) 
13  CSMS$DISTRIBUTE END 
14 
15        open (10, file='io1_out.dat', form='unformatted') 
16        read (10) x 
17        close(10) 
18        call write_point_data(x) 
19        return 
20        end 
21 
22        subroutine write_point_data(x) 
23        include 'io.inc' 
24 
25  CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN 
26        integer x(im,jm) 
27  CSMS$DISTRIBUTE END 
28 
29  CSMS$INSERT      integer xpt(2), ipt 
30 
31  CSMS$INSERT      do ipt=1,2 
32  CSMS$INSERT        xpt(ipt) = 0 
33  CSMS$INSERT      end do 
34 
35  CSMS$PARALLEL(DECOMP_IJ) BEGIN 
36  CSMS$GLOBAL_INDEX(1,2) BEGIN 
37 
38  CSMS$INSERT      xpt(1) = x(1,1) 
39  CSMS$INSERT      xpt(2) = x(im/2,jm/2) 
40 
41  CSMS$GLOBAL_INDEX END 
42  CSMS$PARALLEL END 
43 
44  CSMS$REDUCE(xpt,SUM) 
45        open (17,file='io2_out.dat',form='unformatted') 
46 
47  CSMS$REMOVE BEGIN 
48        write (17) x(1,1), x(im/2,jm/2) 
49  CSMS$REMOVE END 
50 
51  CSMS$INSERT      write (17) xpt 
52 
53        close (17) 
54        return 
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55        end 

Example 9-2 A program that illustrates how SMS can be used to output pieces of decomposed arrays 
efficiently. 

In Example 9-2, subroutine write_point_data outputs two data points of array x to 
unformatted file io2_out.dat.  Since both dimensions of array x are decomposed, it is likely 
that the two data points will not be on a single process.  Other processes may have no data to 
write.  The code at lines 31-33 initializes xpt to 0 for every process.  The GLOBAL_INDEX 
directive ensures the code on lines 38-39 assigns to xpt the correct values to be written only for 
the process(es) that contain(s) the correct data points.  Finally, the REDUCE directive at line 44 
stores in xpt the correct answer for every process by summing the zero and non-zero values. 

For example, suppose after line 38, xpt(1) looks as follows: 

Process        1         2        3 
Data           0         502      0 

The REDUCE directive will globally sum 0, 502 and 0.  The resulting sum (502) is stored in 
xpt for every process.  Now the write statement on line 51 can write the correct value of 
x(1,1) to disk.   

9.3 Formatted I/O 

9.3.1 Formatted Input 

Formatted input including namelists is handled automatically by SMS.  The user does not need to 
add any directives. The only caveat is that input variables cannot be decomposed arrays. In this 
case, a work-around is to enclose the formatted read statements within a SERIAL directive.  
Since formatted reads typically occur infrequently during the course of a model run, this 
approach usually does not incur a significant performance penalty. 

9.3.2 Formatted Output 

Formatted output requires further discussion.  The simple task of printing a message on the 
screen becomes more complicated in an SPMD programming model.  Consider the following 
simple print statement:   

      print *,'HELLO' 

There are no clear standard definitions of what will appear on the screen when a "parallel" print 
statement is executed.  Will each process print a separate message?  Will the separate messages 
appear on different lines on the screen?  Will all processes be forced to wait until the print is 
complete before useful work can continue?  If the statement were executed on three processes, 
we might see any of the following output:   
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HELLO 
 
HELLO 
HELLO 
HELLO 
 
HHHEEELLLLLLOOO 
 
HELLHEHLEOLOLLO 

During the brief history of parallel computing, each of these possibilities has been implemented 
on at least one parallel machine.   

SMS simplifies this situation by providing three "print modes" that allow the user to control the 
behavior of parallel print.  The modes are ROOT, ASYNC, and ORDERED.  These print modes 
are illustrated in the following example and the subsequent discussion.  Assume, line 18 of 
subroutine COMPUTE in Example 9-2 is replaced with: 

      call print_stat(x) 

Subroutine print_stat is as follows: 

 1        subroutine print_stat(x) 
 2        include 'io.inc' 
 3        integer i, j 
 4  CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN 
 5        integer x(im,jm) 
 6  CSMS$DISTRIBUTE END 
 7        integer xmax 
 8  CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN 
 9        xmax = 0 
10        do 200 j=1,jm 
11        do 200 i=1,im 
12          xmax = max(xmax,x(i,j)) 
13          if (x(i,j).le.101) then 
14  CSMS$PRINT_MODE(ASYNC) BEGIN 
15            print *,'WARNING:  x.le.101 !!  ',x(i,j) 
16  CSMS$PRINT_MODE END 
17          endif 
18    200 continue 
19  CSMS$PARALLEL END 
20 
21  CSMS$PRINT_MODE(ORDERED) BEGIN 
22  CSMS$INSERT      print *,'DEBUG:  local maximum value = ',xmax 
23  CSMS$PRINT_MODE END 
24 
25  CSMS$REDUCE(xmax,MAX) 
26 
27  CSMS$PRINT_MODE(ROOT) BEGIN 
28        print *,'maximum value = ',xmax 
29  CSMS$PRINT_MODE END 
30        return 
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    31        end 

Example 9-3 Subroutine showing various examples of use of SMS print modes. 

Assume the executable is called print_modes.  When the serial code versions of 
binary_io and then print_modes are run, the following is printed on the screen:   

>> binary_io 
>> print_modes 
 
 WARNING:  x.le.101 !!   101 
 maximum value =  1005 

When the parallel codes are run on 1 process, the following is printed on the screen:   

>> smsRun 1 binary_io_parallel 
 
>> smsRun 1 print_modes_parallel 
 WARNING:  x.le.101 !!   101 
 DEBUG:  local maximum value =  1005 
 maximum value =  1005 

For 4 processes: 

>> smsRun 4 print_modes_parallel 
 WARNING:  x.le.101 !!   101 
 DEBUG:  local maximum value =  503 
 DEBUG:  local maximum value =  1003 
 DEBUG:  local maximum value =  505 
 DEBUG:  local maximum value =  1005 
 maximum value =  1005 

The print statement on line 28 in Example 9-3, is printed using the ROOT print mode.  This 
mode causes a single message to be printed on the screen.  Only one system-dependent 
designated process will execute the print statement; the others will skip it and can immediately 
continue with useful computations.  The ROOT print mode will cause the parallel code to print 
the same messages as the serial code in most cases.   

The print statement on line 22 is executed using the ORDERED print mode.  This mode causes 
one message to be printed on the screen for each process and guarantees that the messages 
always appear in the same order. It is most useful for debugging purposes.  However, in order to 
guarantee message ordering, no process can continue until all processes have executed the print 
statement.  This means care must be taken that all processes will ALWAYS execute an ordered 
print or the program will hang.  For, suppose we use the ORDERED print mode at line 14: 

      if (x(i,j).le.101) then 
CSMS$PRINT_MODE(ORDERED) BEGIN 
        print *,'WARNING:  x.le.101 !!  ',x(i,j) 
CSMS$PRINT_MODE END 
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        endif 

In this case, we see the same results for the one-process run.  However, the four-process run 
produces the following results: 

>> smsRun 4 print_modes_parallel 
 WARNING:  x.le.101 !!   101 
 DEBUG:  local maximum value =  1003 
 DEBUG:  local maximum value =  505 
 DEBUG:  local maximum value =  1005 

In this case, the program hangs (deadlocks) before the final message can be printed because the 
warning print statement is now an ordered-mode print that has been executed by only one 
process.  The program will wait forever for the other processes to enter this print statement.  The 
root mode is also not appropriate here because the warning message would not be printed if point 
101 were not on the root process.  In this case deadlock would not occur, but the warning 
message would also not be printed.   

The asynchronous mode is the proper mode to use in cases like the printed warning statement on 
line 15 (Example 9-3) because there is no guarantee that all processes will execute the print 
statement.  In this mode, one message will appear on the screen for each process that executes 
the print statement.  Like the root mode, there is no process synchronization during asynchronous 
prints.  As a result, ordering of print statements may vary from one run to the next when 
asynchronous mode is used.  For example, suppose we use the ASYNC mode for line 22 instead 
of ORDERED. 

CSMS$PRINT_MODE(ASYNC) BEGIN 
CSMS$INSERT      print *,'DEBUG:  local maximum value = ',xmax 
CSMS$PRINT_MODE END 

Running with four processes two times might produce the following results:   

>> smsRun 4 print_modes_parallel 
 DEBUG:  local maximum value =  1005 
 DEBUG:  local maximum value =  1003 
 DEBUG:  local maximum value =  505 
 WARNING:  x.le.101 !!   101 
 DEBUG:  local maximum value =  503 
 maximum value =  1005 
 
>> smsRun 4 print_modes_parallel 
 DEBUG:  local maximum value =  505 
 DEBUG:  local maximum value =  1005 
 WARNING:  x.le.101 !!   101 
 DEBUG:  local maximum value =  1003 
 DEBUG:  local maximum value =  503 
 maximum value =  1005 
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Note that the asynchronous-mode prints can appear in any order and can even appear out-of-
order with other non-asynchronous-mode prints.  This can be confusing in some cases.  Also 
important to note is that ASYNC mode does not work properly when the SMS program is being 
run in “serverless” mode (see Section 9.4.3).  The timing of when the print output appears is 
unpredictable. 

If we remove lines 27 and 29 then there is no specific print mode in the code.  In that case, SMS 
uses the value of environment variable SMS_PUTS_MODE.  It can be set to ROOT, 
ORDERED, or ASYNC. If the environment variable is not defined then it defaults to ROOT.  

To implement formatted output of decomposed arrays, either the SERIAL directive can be 
applied or, in some cases, the approach shown in Example 9-2 can be used.
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9.4  I/O Performance Tuning 

This section discusses ways the user of SMS can optimize the I/O performance of their codes.  
These optimizations require a good understanding of how input and output operations are 
handled in SMS.   If you wish to ignore this discussion, the following table offers suggested 
values for the environment variables used to tune SMS I/O. 

There are two different cases: 
 
                   CASE I: Input files will fit in server memory 
 
                  Server/No Cachers       Server/Cachers           Serverless 
                  ---------------------   ---------------------    ---------- 
SMS_RBS           size of largest input   size of largest input    default 
                  file in bytes divided   file in bytes divided 
                  by (SMS_RBC-1)          by (SMS_RBC-1)  
 
SMS_RBC           default (16)            default (16)             N/A 
 
SMS_WBS           size of largest output  default                  default 
                  file in bytes         
 
SMS_CLOSE_MODE    require-flush           require-flush            N/A 
 
SMS_IOC_SIZE      N/A                     size of largest output   N/A 
                                          File in bytes divided 
                                          by the number of cache 
                                          processes and  
                                          multiplied by 2 
 
SMS_RAN_RSTYLE    file                    file                     N/A 
   
 
 
                  CASE II: Input files will NOT fit in server memory  
                           (only affects input) 
 
                  Server/No Cachers       Server/Cachers           Serverless 
                  ---------------------   ---------------------    ---------- 
SMS_RBS           size of largest input   size of largest input    default 
                  variable in bytes       variable in bytes  
                  divided by (SMS_RBC-1)  divided by (SMS_RBC-1) 
 
SMS_RBC           default (16)            default (16)             N/A 
 
SMS_RAN_RSTYLE    one-var                 one-var                  N/A 
 
 

Figure 9-4:  Suggested values for SMS environment variables that affect I/O performance, 

 



 
 122 

9.4.1 General Guidelines 

Two general guidelines should always be considered to improve both serial and parallel I/O 
performance.  First, the user should do as little I/O as possible.  Since I/O operations do not scale 
well, their effect on parallel performance will increase as the number of processes increase.  
What is an insignificant amount of run-time for 2 processes may be quite significant for 200 
processes.   

One optimization that can be very useful is to optionally turn off all print statements.  Many serial 
codes already allow users to turn off some or even all print statements by setting a flag at 
run-time.  This may speed up the serial code in some cases.  The optimization is very useful in a 
parallel code where, on some machines, disabling prints can result in significant performance 
improvements.  The following code fragment illustrates this common optimization:   

      if (print_enabled) then 
        print *,'whatever...' 
      endif 

In this case, “print_enabled” could be input through a namelist at the beginning of program 
execution. 

A second general guideline to improve I/O performance is to combine I/O operations whenever 
possible.  For example, 

read(10) u 
read(10) v 

could be combined into a single read statement: 

read(10) u,v  

This will maximize the size of data blocks read from or written to disk and minimize I/O latency.  
Both unformatted and formatted statements should be considered for these optimizations. 

9.4.2 The SMS Server Process 

By default, SMS designates an additional process, called the server process, to manage the other 
processes and to handle all formatted and unformatted I/O operations.  This allows computations 
to be done concurrent with I/O operations and can improve the overall performance of SMS 
program execution.  Figure 9-5 illustrates a program run using four compute processes and a 
SMS server process. 
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Figure 9-5:   In this example, four processes are requested to run the program.  By default, an additional 
process, called the server process, will be used by SMS for process management and I/O operations.   

9.4.3 Serverless I/O 

For small numbers of processors (less than 8), it may be beneficial to combine the server process 
functions with one of the computational processes.  This type of operation is called serverless I/O 
and is illustrated in Figure 9-6. 

If serverless I/O is used, the I/O functions that would normally be run on a separate process will 
be combined with one of the compute processes.  Serverless SMS can be requested through an 
environment variable given by the command: 

>> setenv SMS_SERVER_MODE serverless   

On most machines, where there will be a one-to-one correspondence between processes and 
processors, serverless I/O will improve performance by making one more processor available to 
do computations.  However, when large numbers of processes are used, program execution will 
usually be faster when a server process is used.  
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P1 P2 P3 P4 PROCESS: 

Computational 
Operations 
SMS I/O Operations 

Serverless SMS Program Execution 

KEY: 

Idle Time 
 

Figure 9-6:  An illustration of four SMS processes used to run a program without a server process.  In this 
example, process P1 must handle both program computations and SMS server functions that include I/O 
operations.  While these operations occur, the other processes will be idle. 

9.4.4 The FLUSH_OUTPUT Directive 

The FLUSH_OUTPUT directive is used to optimize output performance; it is only useful when a 
server process is present.   During write operations, the I/O server process buffers the data to be 
output in memory, re-orders the decomposed data into serial order, and then writes it out in large 
blocks to disk.  By default, any write to disk will be delayed until the buffer is full or the file is 
closed.  When this happens, buffers are "flushed" and their contents written to disk in large 
blocks.  While buffers are being flushed, any processes requesting I/O services will have to wait 
until the flush operation is complete.  The environment variable SMS_CLOSE_MODE can be set 
to “require-flush” for full user control of when buffers are flushed (unless they are full). 

Further performance improvement can be gained by controlling when these buffers are flushed 
using the SMS directive, FLUSH_OUTPUT.   This directive instructs the SMS I/O server 
process to flush the buffers immediately.  If FLUSH_OUTPUT is placed so no other I/O requests 
are made during the flush operation, then no process will have to wait for the flush.  If any I/O 
request is encountered, it must wait until the flush operation is complete thus minimizing the 
effectiveness of FLUSH_OUTPUT.   
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The following code fragment shows how this directive can be used: 

 
      open (17,file='main_fields.dat',form='unformatted') 
      write (17) u,v,w,p,t 
      close (17) 
c useful computations ... 
 
      open (17,file='moisture.dat',form='unformatted') 
      write (17) qs,qi,qr,qg,qw 
      close (17) 
CSMS$FLUSH_OUTPUT 
 
c more useful computation ... 
 
Example 9-4.  Proper placement of a FLUSH_OUTPUT directive. 

In this example, two files are written.  As long as no other I/O (unformatted, formatted, or print) 
operations occur while the flush instruction is being processed, useful computations will proceed 
at full speed while data is simultaneously re-ordered and written to disk.  This ability to overlap 
I/O with useful computation is key to achieving scalable I/O performance on many machines.  
However, any I/O statement that occurs soon after the flush operation will be sufficient to make 
the directive ineffective. For example, when a print statement appears just after the 
FLUSH_OUTPUT, it will force one of the processes to wait until the flush operation completes.  
Most likely, all other processes will eventually end up waiting for this process and useful 
computation will quickly come to a halt until the flush completes:   

 
      open (17,file='diagnostics.dat',form='unformatted') 
      write (17) x1,x2 
      close (17) 
CSMS$FLUSH_OUTPUT 
      print *,'bad idea to print something here...' 
... more useful computation 

Example 9-5.  Improper placement of a FLUSH_OUTPUT directive. 

 

9.4.5 Improving Output Performance 

To increase the performance of output operations, two options are available.  First, SMS allows 
the user to designate at run-time any number of processes to serve as output cache processors.  
For example, Figure 9-7 illustrates a program that is run using twelve computational processes, 
two output cache processes, and a server process.   
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Figure 9-7:  An illustration of SMS output when cache processes and a server process are used.  SMS output 
operations pass data from the computational domain to the cache processes (if specified).  Data is re-ordered 
on the cache processes before being passed through the server process to disk.  The amount of memory 
allocated to the cache processes and the server process can be controlled using SMS_IOC_SIZE and 
SMS_WBS respectively. 

The function of cache processors is to temporarily store data being output so it can be reordered 
and then written to disk.  The computational processes can write their data to multiple cachers at 
high speeds and although these cachers will proceed at relatively slow speeds, total execution 
time is not affected because disk writes can be done at the same time as computations.  Further, 
cache processes provide more memory capacity to temporarily store the data before it is written 
to disk.  The number of output cachers can be requested at run-time using the  -smswb option to 
the smsRun command.  For example: 

>> smsRun nprocs execname -smswb <ncachers>   

executes a program where nprocs is the number of computational processes, execname is the 
name of the executable, and ncachers is the number of output cachers to be used in the run.  
Refer to Section 10 more details about running an SMS program. 

For optimal performance, there should be enough cache processes to store all data to be output at 
one time.  By default, SMS allocates 8 Mbytes of memory for each cache process.  However, the 
environment variable SMS_IOC_SIZE is provided to allow the user to set the amount of memory 
(in bytes) they wish to allocate on each cache process.   The command: 

>> setenv SMS_IOC_SIZE 1000000 
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will allocate one million bytes of cache space.  Since up to 50 percent of the cache space can be 
lost to the overhead required to store the data segments, a recommended size for this field is 
double the size of the expected output.  For example, assume we wish to output the following 
array 

real*4 big_array(100,200,300) 

It will require 24 Mbytes of memory to output this array (4*100*200*300).  This figure should 
then be doubled to account for SMS overhead costs.  If each cache processor contains 10 Mbytes 
of memory available for SMS caching, we will need to allocate five cache processes to output 
this array efficiently. 

A second way to improve output performance is to change the memory allocated to store data 
before being written to disk.  Since output is always written to a buffer on the server process, 
modifying its size can improve performance.  By default the size of this buffer is 256 Mbytes, 
however this value can be changed through the SMS environment variable: SMS_WBS.  If write 
cachers are not used, then this variable should be set to the size of the largest output file when 
possible, otherwise output performance could degrade.   When write cachers are used, the default 
value is usually sufficient. 

9.4.6 Improving Input Performance 

The server process is used to read all formatted and unformatted input data; cache processes are 
not used for input.  If the data is decomposed, they are scattered to the other processes; if the data 
is non-decomposed, it is copied to the other processes. 

By default, three environment variables can be used to control SMS input performance: 
SMS_RBS, SMS_RBC, and SMS_RAN_RSTYLE.  SMS_RBS determines the size of each 
block that will be allocated to store input variables read from disk.  SMS_RBC defines the 
number of blocks of size SMS_RBS that will be used for input.  Finally, SMS_RAN_STYLE 
determines if files or individual variables will be input at one time.  Figure 9-8 illustrates how 
these variables are used for input operations. 

If a single file is input, the environment variable SMS_RBS should be set to the size of that file 
and SMS_RBC should be set to one.  If multiple files (e.g. Initial conditions and boundary 
conditions) are input with differing sizes, SMS_RBS should be set to a common factor of the size 
of each input file.  For example suppose two files are required; an initial conditions file of size 53 
Mbytes and a boundary conditions of size 16 Mbytes.  An approximate common factor for these 
two files is 8 Mbytes (8*2=16, 8*6=54).  Therefore, good starting values would be: 
SMS_RBS=8Mbytes, SMS_RBC=6. 

Using these variables, the total size of each input file should be considered when optimizing for 
performance.  For example the execution of a program may be handled with two files: input of 
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initial conditions, followed by the input of boundary conditions.  There should be sufficient 
memory on a single process to store the entire contents of each input file. 
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Figure 9-8:  All input will pass from disk, through the server process, to individual processes within the 
computational domain.  Two SMS environment variables can be set to control the size of two data structures 
within the server process:  the number of input buffers (SMS_RBC) and the size of each buffer (SMS_RBS). 

If not enough memory is available to store all input on a single process, SMS_RAN_RSTYLE 
should be set to “one-var”.  This will force SMS to read each variable into a buffer that resides on 
the server process, transfer that data to the server process for distribution among the compute 
processes, and then read the next variable.  In this case, the quantity: SMS_RBS * (SMS_RBC-1) 
should be set to the size of the largest input variable. 

The techniques described above are useful for reducing execution time when performance 
analysis indicates that run-time is limited by I/O time.  Exact values of environment variables and 
number of cache processes are best determined by experimentation. 
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10 Program Termination 

Parallel programs using the SMS run-time system require special handling to ensure all processes 
exit normally.  An SMS control process is often used to manage all child processes that have 
been spawned through the smsRun command to execute a program.  Two types of program 
termination are supported by SMS: a normal exit and an abort.  When a program exits normally, 
the SMS control process will wait until every processes’ computations, communications and I/O 
are complete before exiting.  A program abort will not guarantee the completion of outstanding 
operations or an orderly termination of processes. 

10.1 Automatic Code Generation for Termination 

By default, PPP will automatically generate code to abort whenever a Fortran “stop” statement is 
encountered.  PPP will also generate a normal exit whenever a program “end” statement is 
encountered.  Consider the following program: 

      program main 
 
      do ii=0, num_iter 
        call time_steps(ii,status) 
        if (status .eq.  ABORT) then 
          print *,’ Model Run failed at iteration: ‘,ii 
          stop 
        endif 
      enddo 
 
      print *,’ Model Run Successfully Completed’ 
      stop     
      end 

 

Example 10-1.  Automatic Code Generation by PPP will cause this  program to always abort. 

Since the Fortran “stop” appears before the line before the end program statement, PPP will 
generate code to abort the parallel run.  During code translation the following warning message 
will always appear when source contains a fortran stop statement: 

WARNING: Program abort detected. 

Since the intent of the original code in this case is to exit normally from the program, two actions 
can be taken to ensure this happens in the PPP generated source.  Either the second “stop” 
statement (above the “end”) should be removed, or the EXIT directive should be used as 
illustrated in the next section.   
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10.2 EXIT Directive 

EXIT is used to control the run-time behavior of an SMS program. This directive, when inserted 
just before a “stop” statement, will instruct PPP to generate code to exit rather than abort.  The 
proper placement of this directive is illustrated in Example 10-2 below: 

      program main 
 
      do ii=0, num_iter 
        call time_steps(ii,status) 
        if (status .eq. ABORT) then 
          print *,’ Model Run failed at iteration: ‘,ii 
          stop 
        endif 
      enddo 
 
      print *,’ Model Run Successfully Completed’ 
CSMS$EXIT 
      stop 
      end 
 

Example 10-2. Using CSMS$EXIT to override automatic translations 

In this example, a PPP warning message will automatically be generated for every stop statement 
that is not immediately preceeded by the EXIT directive. 

10.3 MESSAGE Directive 

MESSAGE, is used to send a message to the user at run-time and optionally terminate execution 
of the program when it is encountered.  This directive is useful when the user wishes to avoid 
unnecessary parallelization of code they believe is never executed.  Three run-time actions are 
available to the user of MESSAGE: ABORT, terminates execution after writing the given 
message to stderr, WARN writes the given text to stderr, and INFORM writes the text to stdout. 

      if (condition_ever_met) then 
CSMS$MESSAGE(ABORT,'COMPS: THIS CODE HAS NOT BEEN PARALLELIZED BY SMS') 
          call comps(a,b,c,d,NX,NY) 
      endif 

Example 10-3. Using MESSAGE to output run-time messages. 

 

In this example, the programmer believes the subroutine comps is never executed so rather than 
parallelizing it, MESSAGE is used.  Since ABORT is specified, SMS will terminate the 
execution of this program after the message is output to stderr. 



 
 131 

11 Building a Parallel Program 

11.1 Overview 

This section describes how to use the Parallel Pre-processor (PPP) to translate Fortran code into 
SMS parallel source.  Output files, named automatically by PPP, will be introduced in Section 
11.2.  Several command line options to PPP are described in Section 11.3.  In Section 11.4, a 
simple makefile is described which can be used to build a serial or SMS parallel code.  In 
addition, various relevant compiler and linker options are discussed in this section. Building 
parallel source using PPP can result in both syntactic and semantic errors that must be corrected.  
Section 11.5 will discuss how to interpret these PPP generated messages.  Finally, Section 11.6 
will describe compiler errors due to namespace conflicts from PPP generated source. 

11.2  PPP Generated Output Files 

Output files generated by PPP are named automatically.  Include files will be named by 
appending “.SMS” to the original file name (e.g. params.h becomes params.h.SMS).  All 
other source files will be named by appending “_sms” to the body of the original filename (e.g. 
main.f becomes main_sms.f).  Intermediate files are also generated during the code 
translation process.  These files, appended with the suffix “.tmp”, remain after PPP translation.  
When errors are detected in the code during code parallelization, PPP messages will be generated 
that reference these intermediate files (see Example 11-6).  Any corrections should still go into 
the original file from which translated code is generated by PPP. 

11.3 Building SMS Parallel Source Code 

The transformation of Fortran code into parallel SMS code requires the use of PPP.  PPP 
translations are based on both its analysis of the original code and the SMS directives that were 
inserted into the code.  This section describes how to use PPP to create parallel code at the 
command line, defines what code generation options are available, and gives some examples. 

11.3.1 PPP Command Line Options 

All PPP code translations are managed through a command line script called ppp.  A single file 
can be processed at a time and no inter-procedural analysis is done.  PPP is invoked by: ppp 
[options] filename .  Command line options currently available are: 

--checkfirst A useful optimization to avoid PPP processing of files that do not 
require translation.  This option can be used to allow more flexible 
use of suffix rules (see Section 11.4).  If no I/O statements or 
directives are found, no PPP processing is done and the following 
message is output: 
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                    File has no directives - SKIPPING PPP 
PROCESSING 
 

--comment leaves replaced lines in the code as Fortran  comments.  This can 
be useful for debugging the parallel code. Note: the string used to 
comment out the original code is C-PPP. 

 
--ExtendedSource       allow valid Fortran source to extend beyond 72 characters 

 
--Fcommon name of an optional include file that is not part of the original 

source code.  Typically it will contain data decomposition 
directives (see Example 11-4) 

 
            --Finclude              name of an included file to be parallelized that is referenced in the  
                                                 source file being translated by PPP (see  
Example 11-2) 
 

--Fvisible file(s) to be made visible to PPP in order to correctly translate the 
current file.  This option is only required for a series of nested 
include files (see Example 11-3) 

 
--header indicates the type of file to be translated is a Fortran include file 

 
--help prints the command line options 

 
--IncludePath include file search path.  Similar to -I F77/F90 compiler option 

 
--Verbose controls the output of PPP diagnostic and code analysis messages.  

Errors, Warnings and Notes are output based on the verbose value.  
(see Example 11-7). 

 

11.3.2 Examples 

Example 11-1 shows how to build a parallel version of an include file: 

>> ppp --header  params.h 
 
[params.h] 
 
      parameter(nx=50, ny=50) 
 
CSMS$DECLARE_DECOMP(decomp, <nx, ny>) 
 
C global variable declarations … 
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Example 11-1.  Building any Fortran include file requires the --header option. 

 

Example 11-2 shows how to use the parallel version of an include file when translating an 
executable code file.  Since the translation of params.h will result in an SMS parallel version of 
this file (params.h.SMS), we use the --Finclude option to ensure this include file reference will be 
changed in the parallel version of dynamics.f. 

>> ppp --Finclude=params.h --comment dynamics.f 
 
 [dynamics.f]   

......................................................... 
      program dynamics 
 
      include ‘params.h’ 
 
c   Fortran code ... 
 
      end 
 

......................................................... 
GENERATED PARALLEL PSEUDO CODE 

......................................................... 
[dynamics_sms.f] 
 
      program dynamics 
 
C-PPP      include ‘params.h’ 
      include ‘params.h.SMS’ 
 
c    Fortran code 
 
      end 
 
 

Example 11-2:  The –Finclude option is used to specify the Fortran include file params.h which is referenced 
in the file (dynamics.f) being translated.   This ensures the parallel (translated) include file will be referenced 
in the translated output of dynamics.f. 

Example 11-3 illustrates the use of the --Fvisible option. In this example, the file “variables.h” 
requires information about the data decompositions listed in “params.h” to correctly translate the 
declarations “a” and “b” enclosed within the DISTRIBUTE directive.    In particular, the array 
dimensions nx, ny and nz must be translated to process local sizes using information provided 
by DECLARE_DECOMP.  The  --Fvisible option is used is used to make params.h “visible” to 
variables.h. 

>> ppp --header params.h 
>> ppp --Fvisible=params.h --header variables.h  
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>> ppp --Finclude=params.h --Finclude=variables.h main.f 
 
[params.h] 
........................................................ 
      parameter(nx=50, ny=50) 
CSMS$DECLARE_DECOMP(decomp, nx, ny) 
 
C global variable declarations ... 
........................................................  
 
[variables.h] 
........................................................ 
CSMS$DISTRIBUTE(decomp, nx, ny) BEGIN 
      real a(nx, ny, nz) 
      real b(nx, ny, nz) 
CSMS$DISTRIBUTE END 
........................................................ 
 
 
[main.f] 
........................................................ 
      program main 
 
      include ‘params.h’ 
      include ‘variables.h’ 
 
c other code ... 
 
      end 
 
 

Example 11-3:   The --Fvisible option is used when inter-dependent include files must be translated. 
In Example 11-1, the CSMS$DECLARE_DECOMP was added to an include file that already 
existed (params.h).  If the user prefers to insert the SMS directives into a separate “directives” 
file, the option --Fcommon is used instead of --Finclude.  Example 11-4 illustrates the --
Fcommon option.  

>> ppp --header sms.inc 
>> ppp --Fcommon=directives.inc dynamics.f 
 
 
[directives.inc] 
........................................................ 
      parameter(nx=50, ny=50) 
CSMS$DECLARE_DECOMP(decomp,<nx,ny>) 
........................................................ 
 
 
[dynamics.f] 
......................................................... 
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      program main 
 
      include ‘params.h’ 
 
c     more Fortran code ... 
 
      end 
 

......................................................... 
GENERATED PARALLEL PSEUDO CODE 

......................................................... 
      program main 
 
      include ‘directives.inc.SMS’ 
      include ‘params.h’ 
 
c     more Fortran code ... 
 
      end 
 
 

Example 11-4:   In this example DECLARE_DECOMP, defined in “directives.inc”, is referenced (and 
required) by “dynamics.f”.  Note: Since params.h no longer contains any SMS directives and will not be 
translated by PPP, it CANNOT be listed using the -Finclude command line option. 

 

11.4 Building PPP Executables 

A simple makefile is presented to aid the user in translating their sequential codes into SMS 
codes.  This file assumes the variable “SMS” has been set to the location where the SMS 
software has been installed.  This can either be set explicitly in the Makefile at line 5, or defined 
as an environment variable (e.g. setenv SMS pathname). 

 1 # standard make file used to build serial or SMS parallel executables 
 2 
 3 .SUFFIXES: .s .p 
 4 #     
 5 SMS = /usr/local/sms  
 6 
 7 # system specific compilation flags (for an SGI Origin 2000) 
 8 COMPILER = f77 
 9 COMP_FLAGS = -O2 -64 -mips4 -r10000 -fixedform -I$(SMS)/include 
10 
11 #  SMS link libraries 
12 LIBS = -L$(SMS)/lib -lfnnt -lnnt -lsrs -lppp_support -lmpi 
13 
14 # PPP specific options set here 
15 PPP = $(SMS)/bin/ppp 
16 PPP_FLAGS = --Finclude=params.h --Finclude=variables.h --comment \ 
17 --checkfirst 
18 PPP_HEADER_FLAGS = --header --comment 
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19 
20 # include files 
21 INCLUDES = params.h variables.h globals.h 
22 PINCLUDES = ${INCLUDES:.h=.H} 
23 
24 # object files  
25 OBJS = file1.o file2.o file3.o 
26 
27 PFILES = ${OBJS:.o=.p} 
28 SFILES = ${OBJS:.o=.s} 
29 
30 # executable target names      
31 parallel: $(PINCLUDES) $(PFILES) 
32  $(COMPILER) -o par_prog $(OBJS) $(COMP_FLAGS) $(LIBS) 
33 
34 serial: $(INCLUDES) $(SFILES) 
35   $(COMPILER) -o seq_prog $(OBJS) $(COMP_FLAGS) $(LIBS) 
36 
37 # suffix rules for sequential and parallel source 
38 .f.s:  $(INCLUDES) 
39  $(COMPILER) -c $(COMP_FLAGS) $< 
40 
41 .f.p:  $(PINCLUDES) 
42   $(PPP) $(PPP_FLAGS) $*.p 
43   $(COMPILER) -c $(COMP_FLAGS) $*_sms.f 
44   mv $*_sms.o $*.o 
45 
46 # include file translations  
47 params.H: params.h 
48   $(PPP) $(PPP_HEADER_FLAGS) params.h   
49 
50 variables.H: variables.h params.h 
51   $(PPP) $(PPP_HEADER_FLAGS) --Fvisible=params.h variables.h 
52 
53 globals.H: 
54 
55 clean:    
56  /bin/rm *_sms.f *.SMS *.o *.tmp 

Example 11-5.  A makefile for serial or parallel source.    

11.4.1 Makefile Compiler and Linker Options 

The Fortran compiler flags (COMP_FLAGS on line 9) are set for an SGI Origin 2000.  Other 
systems will require different options.  A makefile provided in the SMS distribution 
($SMS/lib/makefile.header) gives recommended compilation flags (found in variable 
STD_OPT_FLAGS) that should be used when modifying COMP_FLAGS for the target machine. 

11.4.2 Include File Handling 

Include files are listed for both parallel and sequential source in the makefile variable 
INCLUDES.  Parallel include files (line 22) are translated using SMS are built using the explicit 
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targets params.H and variables.H (lines 47-51).  Notice the PPP command to build variables.h 
(line 51) contains the --Fvisible option in addition to the standard ppp flags defined by: 
PPP_HEADER_FLAGS at line 18.  Since variables.h requires information from params.h for 
proper translation, this option is required (see Example 11-3). 

PPP_FLAGS (lines 16-17) lists the include files that are translated by PPP via the –Finclude 
option.  This option is required to ensure any references to these files in Fortran source will be 
modified to their parallel filename (see  
Example 11-2).  

11.4.3 Building the Object Files 

Two suffix rules are used to build sequential or parallel object source. Sequential source files are 
built using the first (.f.s) suffix rule (line 38) while parallel source rely on the second (.f.p) suffix 
rule (line 41). This makefile uses .s for serial and .p for parallel but any suffix name could have 
been used.  Using these rules to build an SMS parallel object file from the file file1.f, for 
example, the user would enter: 

>> make file1.p 

PPP generated source is written to the file: file1_sms.f, and the object file: file1.o would 
be built unless compilation errors occurred. 

Similarly, to build a serial object file, the user would enter: 

>> make file1.s 

11.4.4 Building the Executable 

In addition to building single object files, this makefile can also build a parallel or serial 
executable from a set of object files.  Using a pre-defined list of object file names (OBJS on line 
25)), parallel (PFILES at line 27) and serial (SFILES at line 28) files are determined and listed as 
dependencies for each target executable.  This assumes there is a direct mapping between the 
object and source file names (e.g. file1.o maps to file1.f; not something else). 

Then to build the SMS parallel executable “par_prog” in this makefile, the user would enter: 

>> make parallel      

Similarly, the user would enter the following to build a serial executable called seq_prog: 

>> make serial 
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11.5 PPP Error Reporting 

Two types of errors are reported by PPP: parsing errors and semantic errors. Parsing errors must 
be corrected before further translations of the input file are permitted.  Semantic errors are 
reported as errors, warnings or notes.  These messages can be controlled through the --verbose 
option of PPP discussed in Section 11.5.2. 

11.5.1 Parsing Errors 

Parsing errors occur when PPP cannot resolve the Fortran code to the grammar defined by the 
SMS/PPP directives (refer to the SMS Reference Manual), and the Fortran 77 language. Further 
details about language extensions supported by SMS can be found at: 

http://www-ad.fsl.noaa.gov/ac/SMS_Supported_Fortran_Features.html 

The parser currently supports statements or PPP directives that are up to 500 characters in length.  
Multiple statement lines are collapsed and white space is removed before statements are parsed.  
Statements longer than 500 characters will not be parsed correctly in PPP. 

The form of a parsing error message is: 

<filename> <line> <column> <error type> <message> 
 

filename - name of file being parsed 
line - line number 
column - column number in which error occurred 
error type        - types are:  
                             ERROR, WARNING, NOTE 
message - diagnostic message  
 
 

An example of a PPP generated parsing error is shown in Example 11-6.   
 
 1 CSMS$DECLARE_DECOMP(spec_dh,<jtrun>) 
 2 CSMS$DISTRIBUTE(spec_dh, jtrun) BEGIN 
 3       real*8 cc(jtrun), bb(jtrun) 
 4 CSMS$DISTRIBUTE END 
 5 
 6 CSMS$PARALLEL(spec_dh, m) BEGIN 
 7       do 3 m=2, jtrun, 2 
 8         cc(m) = cc(m) + bb(m)      
 9    continue 
10  
11 C  CSMS$PARALLEL END is missing 
12 
13    end 



 
 139 

Example 11-6.  Code that generates a PPP parsing error. 

 
 
PPP generates the following error message: 
 
“Loops_sms.f.tmp" 13 501 ERROR: Syntax error 
“Loops_sms.f.tmp" 13 501 NOTE Parsing resumed here  

This message indicates the parser failed in the file Loops_sms.f.tmp at line 13 column 501.  
A parsing error occurring at column 501 indicates no resolution of the statement to the grammar 
by the end of the line.  In the example, the parser expects a PARALLEL END directive before 
the end of the file. Naturally, the error should be corrected in the original file (Loops.f) rather 
than the PPP generated file. 

11.5.2 Semantic Errors 

Semantic errors are reported when a section of code targeted for translation has an error (a PPP 
ERROR), may cause incorrect code to be generated (a PPP WARNING), or identifies a place 
where a particular type of transformation occurred or PPP language limitation was detected (a 
PPP NOTE).  By default, all PPP ERROR messages will be output.  Control of semantic errors 
are handled through the PPP command line option: --verbose = <value>.  Four verbose options 
are permitted: 

value  message domain 
 

   0   no semantic messages are output (not recommended) 
   1   PPP ERRORS only (DEFAULT) 
   2  PPP ERRORS and WARNINGS only 
   3  PPP ERRORS, WARNINGS and NOTES 

 
 

While the error messages should always be addressed, warning messages may also be useful for 
detecting potential problems.  For example, the code segment in Example 11-7 below causes PPP 
to generate the following important warning message: 

./IO.f.tmp” 11 13 WARNING: This variable, decomposed by CSMS$DISTRIBUTE, is 
being used outside of a parallel region. 

This warning message indicates a problem on line 11, column 13 of the PPP generated file 
IO.f.tmp.  The variable cc was defined to be a distributed array (using DISTRIBUTE) but is 
being referenced outside a parallel region (PARALLEL).  Further explanation on the use of these 
directives can be found in Section 2.3. 

>> ppp --verbose=2 IO.p  
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 1 CSMS$DISTRIBUTE(dh, m, n) BEGIN 
 2       real cc(m,n) 
 3 CSMS$DISTRIBUTE END 
 
 4       do i = 1, m 
 5         do j = 1, n 
 6           cc(i,j) = 0.0 
 7         enddo 
 8       enddo 
 9 
10 c   more code ... 

Example 11-7.  Code that generates a WARNING because the decomposed variable “cc” is being used outside 
of a parallel region. 

 

11.6 Compilation Errors 

During the parallelization process PPP generates new variables for some translations.  PPP 
variables are either automatically generated or defined explicitly by PPP.  Explicitly defined 
names will always contain a double underscore in their name (e.g. ppp__status).  To avoid 
compiler errors due to name space conflicts, avoid using variable names with double underscores 
in them. For example, the sequential code cannot contain a variable called PPP__status 
because PPP translation explicitly defines another variable called ppp__status for its own 
use.  A compilation error would result because two variables would be declared with the same 
name. 
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12 Running a SMS Program 

12.1 Introduction 

Once a program has been translated into SMS parallel code (Section 11.3) and linked to the 
appropriate libraries (see Section 11.4), it can be run on one or more processors using the SMS 
run-time executable smsRun. The syntax for smsRun is: 

>> smsRun numprocs execname [options]   

By default, SMS uses an additional server process to perform I/O operations, and provide overall 
management and control services for the other processes.  For example, to run the executable test 
with two processes and one server process, the user would enter: 

>> smsRun 2 test      

It is possible to take advantage of the idle compute cycles available on the server process by 
setting SMS environment variable SMS_SERVER_MODE to serverless.  This will permit 
computational and management functions to co-exist in a single process.  This option is 
beneficial when only a small number of processors are available.  However, as the numbers of 
processes grow, the cost of performing both server functions and computations will limit the 
performance of the other dependent processes.  

Figure 9-5 assumes a single process is run on each processor.  However, SMS permits the user to 
request more processes (using smsRun) than available processors.  For example if my_program 
was run with 20 processes: 

>> smsRun 20 my_program 

on a system with only 16 processors, five processors would contain two processes, one would 
contain the server process, and the rest would each contain a single process designated to run the 
program.  This is a bad idea because performance will suffer whenever multiple processes are 
scheduled on a single processor on most machines.   

12.2 Optional Command Line Arguments 

Several optional arguments to smsRun are permitted.  One optional argument to control the 
number of I/O write-cache processes to be dedicated to the program’s execution can be expressed 
by: 

>> smsRun numprocs execname -smswc numcacheprocs 

The use of write-cache processes to improve performance is discussed in Section 9.4.5. Another 
option, -sms-, allows the user to specify machine specific arguments to the underlying 
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communication layer (e.g. MPI, SHMEM) directly.  All arguments that follow this option will be 
ignored by SMS and passed directly to the communications software.  For example: 

>> smsRun 3 test -sms- -mpi_special

illustrates a way to pass the run-time option -mpi_special to the underlying MPI executable 
(mpirun) to specify node names on a network of work stations.  Information about other machine 
specific optins for smsRun are available at the following SMS web site: 

http://www-ad.fsl.noaa.gov/ac/SMS_Run_Options.html 

12.3 Run-time Environment Variables 

Several environment variables can also be set to control the run-time behavior of SMS.  The 
following environment variables are available: 

SMS_BITWISE Set to “EXACT” to use bit-wise exact reductions - see Section 7.2 
SMS_CHECK_HALO           Set to “ON” to execute checks of halo regions specified by 

CHECK_HALO directives. 
SMS_CLOSE_MODE 
SMS_IO_FORMAT               Used to specify file format for files that are read or written by SMS 

(see Section 9.1). 
 
SMS_IOC_SIZE Improving Output Performance (see page 125) 
SMS_PUTS_MODE Modifies the default behavior of formatted output.  Options are: 

ROOT, ASYNC and ORDERED.  See Section 9.3 for more details 
about these options. 

SMS_RAN_RSTYLE Improving Input Performance (see page 127) 
SMS_RBC Improving Input Performance (see page 127)  
SMS_RBS Improving Input Performance (see page 127) 
SMS_READ_FORMAT         Used to specify file format for files that are read by SMS (see 

Section 9.1). 
 
SMS_SERVER_MODE The SMS Server Process (see page 122)   
SMS_TIMER_LEVEL 
SMS_WBS See Section 9.4.5 - page 125 
SMS_WRITE_FORMAT       Used to specify file format for files that are written by SMS (see 

Section 9.1).   
SMS_XFERMODE Controls transfer algorithms that are used to implement 

TRANSFER.  Options are: “logn” and “original” 
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12.4 Run-time Error Messages 

When an error occurs in an SMS program, execution will usually terminate and SMS will 
generate an informational message describing the source file name, line number, and a brief 
summary of the problem.  A complete set of SMS run-time error messages is available at the 
following SMS web site: 

http://www-ad.fsl.noaa.gov/ac/SMS_Messages.html   

Example 12-1 illustrates SMS run-time message capabilities. Recall that the user is responsible 
for determining the correct number of processes over which to run the program.  For static 
memory allocated programs, the minimum number of processes will be determined by declared 
local size values in DECLARE_DECOMP as discussed in Section 3.3. 

 1       program example1 
 2 
 3    parameter(nx=50, ny=50) 
 4    parameter(nx_a=nx/2, ny_a=ny/2) 
 5 CSMS$DECLARE_DECOMP(decomp, <nx_a, ny_a>) 
 6 CSMS$DISTRIBUTE(decomp, nx,ny ) BEGIN 
 7       real a(nx,ny)     
 8 CSMS$DISTRIBUTE END 
 9            
10 CSMS$CREATE_DECOMP(decomp,<nx,ny>,<0,0>) 
 
>> smsRun 1 example1 
 
 Process:   0 Error at: ./example_sms.f.tmp:17.1 
 Process:   0 Error status =  -2202 MSG: DECOMPOSED ARRAYS ARE TOO SMALL. 
 Process:   0 Aborting... 

Example 12-1.  Code and command that generates a run-time SMS error. 

After PPP translation, the array a will be defined with the declared local sizes nx_a and ny_a 
given in DECLARE_DECOMP.  Since the local sizes of this array are half the size of the original 
code (nx and ny respectively), the minimum number of processes the user can run this problem is 
four (two in each direction).  If you attempt to run on fewer processes, the program will halt with 
the given error message. 

The first line of the error message indicates the file name and location within the file where the 
problem occurred.  PPP generated code frequently uses sub-numbering due to multiple generated 
calls to SMS routines that stem from the same line of original code.  In this example, a run-time 
error was detected by SMS at line 17 in code generated by the directive CREATE_DECOMP that 
can be found in temporary file: example1_sms.f.tmp (not shown). 



 
 144 

The second line gives the SMS error message.  The error messages reflects the incorrect sizing of 
the decomposition decomp, declared by DECLARE_DECOMP and initialized by 
CREATE_DECOMP. 

Once the problem is understood corrections to the code can be made.  These corrections should 
go into the original file (in this case example1.f) not in the temporary file where the problem was 
detected and probably diagnosed.  Once changes are made, ppp can be executed to re-translate 
the input file from which a fresh executable can be built and tested. 

 

Appendix A:  Assignment of Processes to Decomposed Dimensions 

The assignment of processes to decomposed dimensions by SMS depends on the number 
of processes and the global sizes of the decomposed dimensions.  Below are the rules that 
SMS follows when deciding how to allocate processes among one or two decomposed 
dimensions.  Assume that Np = number of processes and Nd = number of decomposed 
dimensions:   

  1)  If Nd=1, assign all processes to the single decomposed dimension.   

  2)  If Np is prime, assign all processes to the decomposed dimension with the largest 
size.   

  3)  If Np is not prime and Nd=2, factor Np into f1*f2 = Np, such that factors f1 and f2 
are as close together as possible.   

  3a)    If factors are equal (f1=f2), assign f1 processes to each decomposed dimension.   

  3b)    If factors are not equal, assign a number of processes equal to the largest factor to 
the decomposed dimension with the largest size.   

  3c)      If factors are not equal and sizes of decomposed dimensions are equal, assign a 
number of processes equal to the largest factor to the last decomposed dimension.   

These rules are intended to allow for optimum performance with minimal input from the 
user.  Rule 1 handles the simple cases where more than one decomposed dimension has 
been specified but only one can actually be decomposed because the number of processes 
available is prime.  Assignment of all processes to the largest decomposed dimension will 
usually result in the most efficient distribution of work.  Rule 3 restricts factoring of Np 
to keep the number of processes assigned to each dimension as close together as possible.  
For example, with Nd=2, 100 processes would be factored into 10*10, not 20*5 or 25*4.  
The effect of this rule is to keep the virtual process array as "square" as possible which 
can be beneficial for "exchange" type communications on some machines.  Rule 3b will 
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cause more processes to be assigned to larger dimensions in cases where factors are not 
equal.  This was the case in the 8-process run where im was greater than jm in the 
examples above.  The purpose of this rule is to allow SMS to attempt to "fit" the virtual 
process array to the Fortran arrays as closely as possible.  Rule 3c causes SMS to assign 
more processes to the last decomposed dimension to allow the user to control whether 
more processes will be assigned to the outer or inner array dimensions.   

To further illustrate rule 3c, consider the following code fragments:   

[ Fragment 1.] 
CSMS$CREATE_DECOMP(DECOMP_1, <nx, ny>, <0,0>) 
... 
CSMS$DISTRIBUTE(DECOMP_1, <nx>, <ny>) BEGIN 
      real u(nx,ny) 
CSMS$DISTRIBUTE END 
 
[ Fragment 2.] 
CSMS$CREATE_DECOMP(DECOMP_2, <jm, im>, <0,0>) 
... 
CSMS$DISTRIBUTE(DECOMP_2, <im>, <jm>) BEGIN 
      real a(im,jm) 
CSMS$DISTRIBUTE END 
 

In fragment 1, when nx.EQ.ny, more processes will be assigned to the second 
decomposed dimension, ny, which is the outer dimension of array u.  This will preserve 
the longest possible vector lengths because the inner dimension of u (nx) will not be split 
up among the processes.  This approach is good for a machine with vector processes.  In 
fragment 2, when im.EQ.jm, more processes will be assigned to the second 
decomposed dimension, im, which is the inner dimension of array a.  In some special 
cases, this may result in better performance on some cache-based machines.  In general, 
the user can simply keep the decomposed dimensions in the same order as the array 
dimensions and expect the best performance in most cases on most machines.   
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